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Verbal-information and fixed-phrase approaches for identifying a person via voice

are ready for real-world applications.
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ersonal-identification numbers (PINs), pass-

words, and social-security numbers have been

used extensively and have become an almost in-

separable part of our modern daily life. They are
used to ensure proper access to private informa-
tion, personal transactions, and for security of computer and
communication networks. To further enhance the security
and to improve identification accuracy, biometric features
such as signature, fingerprint, hand shape, eye iris, and voice
have also been used. Among all biometric features, a per~
son’s voice is the most convenient one for per~
sonal-identification purposes because it is easy to produce,
capture, and transmit over the telephone network.

Speaker or voice authentication is the process of authen-
ticating a user via his/her spoken input. Voice authentica-
tion obviously can be done by human experts or operators.
However, it will cost more and users may have to wait for
services. How to automate the authentication procedure
and maintain speed and high performance poses a serious
technical challenge to speech researchers.

In this article, we focus exclusively on the use of voice for
authentication applications and review recent advancements
in this arca. The technical components in speech recognition
and verification systems are reviewed, and we then discuss a
(SV)
matching to identify a person based on voice characteristics.
We also discuss a newly proposed verbal-information verifi-

speech-verification system that utlizes stochastic
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cation (VIV) system that verifies identity through the content of
the verbal information.

Two Methods of Speaker Authentication

As shown in Fig. 1, the approach to speaker authentication can
be categorically divided into two groups: by a speaker’s voice
characteristics, which leads to speaker recognition, or by the ver-
bal content of an utterance, which lezds to VIV.

Speaker Recognition

Speaker recognition, according to its classification nature, in-
cludes SV and speaker identification (SID). SV is the process of
verifying whether an unknown speaker is the person as claimed;
i.e., a yes-no hypothesis testing problem. On the other hand,
SID is the process of associating an unknown speaker with a
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Figure 1. Speaker-authentication approaches.
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Figure 2. A speaker-verification system.

member in a population; i.e., a multiple-choice classification
problem.

A typical SV system is shown in Fig. 2, which has two op-
erating scenarios: enrollment and test sessions. A speaker needs
to enroll first before he/she can use the system. In an enroll-
ment session, the user’s identity, like an account number, is as-
signed to the speaker, then the person is assigned or asked to
select a pass-phrase (e.g., a connected digit string or a phrase,
like “open sesame’ shown in the figure). The system then
prompts the speaker to utter the pass-phrase (the enrollment
utterances) several times to allow training or constructing of a
speaker-dependent (SD) model that registers the speakers
speech characteristics. The speaker who has already enrolled
can use the verification system in a future test. In a test, the
user first claims his/her identity by entering or speaking the
identity information, and the system then prompts the speaker
to utter the pass-phrase. The pass-phrase utterance is com-
pared against the already-trained SDD model. A speaker is ac-
cepted if a decision score exceeds a preset threshold;
otherwise, the speaker is rejected.

When the pass-phrases are the same in both training and
test, the system is called a fixed pass-phrase system. Frequently,
a connected-digit sequence of the telephone or account num-
ber is chosen as the fixed pass-phrase. Using a digit string for a
pass-phrase has a distinctive difference from other nondigit
choices. The high performance of the current connected-digit
speech-recognition systems and embedded error-correcting
possibilities of digit strings make it feasible that the identity
claim can be made via spoken, rather than key-in, input. If
such an option is installed, the spoken digit string is first recog-
nized by an automatic speech recognizer (ASR) and the stan-
dard verification procedure then follows. Obviously,
successful verification of a speaker relies upon a correct recog-
nition of the input digit string.

A safety concern may be raised about using fixed
pass-phrases since a spoken pass-phrase can be tape-recorded
by impostors and used in later trials to get access to the system.
A text-prompted SV system has been proposed to circumvent
such a problem. A text-prompted system is made by first train-~
ing a set of speaker-dependent word or subword models of a
small vocabulary, such as digits. When the user tries to access
the systemn, the system prompts the user to utter a randomized
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sequence of words in the vocabulary. The randomized word
sequence is aligned with the pretrained word models and a
verification decision is made based upon likelihood scores.
Such a text-prompted system normally needs longer enroll-
ment time in order to collect enough data to train SD word or
subword models, compared to a fixed-phrase system. The per-
formance of a text-prompted system is generally not as high as
that of a fixed-phrase system. This is due to the fact that, un-
like a fixed phrase, the co-articulation effect between words is
usually undertrained unless enough training data can be col-
lected during enrollment. Details on a text-prompted system
and its performance can be found in [1].

The above systems are called text-dependent, or
text-constrained, SV systems because the input utterance is
constrained, either by a fixed phrase or by a fixed vocabulary.
A verification system can also be text-independent. In a
text-independent SV system, a speaker’s model is trained on
the general speech characteristics of a person’s voice. Once
such a model is trained, the speaker can be verified regardless
of the underlying text of the spoken input. Such a system has
wide applications in monitoring applications for verifying a
speaker on a continuous basis. In order to characterize a
speaker’s general voice pattern without a text constraint, we
normally need a large amount of phonetically or acoustically
rich training data in the enrollment procedure. Also, without
the text or lexical constraing, longer testing segments are usu-
ally needed to maintain satisfactory SV performance. Without
a large training set and long testing segments, the performance
of a text-independent system is usually inferior to that of a
text-dependent system.

In evaluating an SV system, if it is both trained and tested by the
same set of speakers, it is called a closed test; otherwise, it is called
an open test. In a closed test, the impostors (i.e., all except the true
speaker) in the population can be used to train high-performance,
discriminant speaker models. However, as most SV applications
are open test, to train the discriminant model against all possible
impostors is not possible. As an alternative, a set of speakers whose
speech characteristics are close to the speaker can be used to train
the SD discriminant model, or speaker-independent (SI) models
can be used to model impostors.

Verbal-Information Verification

Other than the conventional speaker recognition reviewed in
the previous section, speaker authentication can also be ap-
proached by VIV. VIV is the process of verifying spoken ut-
terances against the information stored in a given personal data
profile. Compared to speaker recognition, VIV is a relatively
new concept. We first proposed the idea of VIV in 1997 [2]
and gave an update report in 1998 [3]. There are two ways to
implement VIV. The input utterance can be verified either
through ASR or utterance verification. With ASR, the spo-
ken input is transcribed into a sequence of words. The tran-
scribed words are then compared to the information prestored
in the claimed speaker’s personal data profile. A verification
decision is then made. With utterance verification, the spoken

-
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Utterance-Verification Technology

In this section we review the basic building
blocks of SV and VIV systems. For VIV, since the
most important core technology is utterance ver-
ification, this particular module is reviewed in de-
tail. The function blocks reviewed in this section
include feature extraction, stochastic models, ut-
terance segmentation, and statistical verification.
The applications of these building blocks can be
found in Figs. 2, 6, and 8. Feature extraction is al-
ways used for any input utterance. A stochastic
model is constructed to characterize the feature

Figure 3. An example of verbal-information verification by asking sequential

questions.

input is verified against an expected sequence of word or
subword models [4-8], which are taken from a personal data
profile according to the identity claim made by the user.

An example of VIV is shown in Fig. 3. Tt is similar to a typi-
cal telebanking procedure: after an account number is provided,
the operator verifies the user by asking some personal informa-
tion questions, such as mother’s maiden name, birth date, ad-
dress, home telephone number, etc. The user must answer the
questions correctly in order to gain access to his/her account.
To automate the whole procedure, the questions can be
prompted by a text-to-speech system (TTS) or as prerecorded
message, then the spoken responses are automatically verified.

A major difference between speaker recognition and VIV
in speaker authentication is that a speaker-recognition system
utilizes a speaker’s speech characteristics represented by the
speech feature vectors, while a VIV system mainly inspects the
verbal content in the speech signal.

The difference can be further addressed in the following
three aspects. First, in a speaker-recognition system, for either
SID or SV, we need to train SID models, while in VIV, we
only use SI speech models. Second, a speaker-recognition sys-
tem needs to enroll a new user to train the SD model, while a
VIV system does not need such an enrollment. A user’s per-
sonal darta profile is created when the account is set up. Finally,
in speaker recognition, the system has the ability to reject an
imposter when the input utterances contain a legitimate
pass-phrase but fail to match the pretrained SID model. In VIV,
it is solely the user’s responsibility to protect his/her own per-
sonal information because no speaker-specific voice charac-
teristics are used in the verification process.

This dichotomy of VIV and speaker recognition, how-
ever, is not rigid. For example, VIV can be used for automatic
enrollment of a speaker in a speaker-recognition system and
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vectors statistically. Utterance segmentation
means to segment an utterance into a sequence of
states for likelihood computation using the
trained model. Statistical verification includes hypothesis test-

ing for SV and utterance verification.

Feature Extraction

A significant amount of acoustic-phonetic and speaker infor-
mation 15 embedded in the short-time spectral envelope of
speech signals. This spectral information can be extracted by
short-time spectral analysis and compactly represented by
cepstral coefticients that are the cosine transform of the log
spectrum. Due to its logarithmic nature for controlling the
spectral dynamic range and the orthonormality of the cosine
basis functions for decorrelating feature components, cepstral
coefficients have been widely used as the standard features in
both speaker and speech recognition. Given a speech signal se-
quence s, its cepstral vector 0 is represented as

o, = 7" (log|F(s)) M

where Fand 7' denote the Fourier transform and its inverse.
The first 10 to 20 cepstral coeflicients provide a compact rep-
resentation of the succinct spectral properties of speech signals.
In the following, we briefly introduce the LPC (linear predi-
cative coding) front-end processor for its popular usage in
speech processing, especially in modern digital coding of
speech signals. LPC analysis and the corresponding cepstral
coefficients are used in all experiments reported in this article.
As shown in Fig. 4, the speech signal is first digitized into a
sequence of samples. A sampling rate of 8 kHz is used for tele-
phone input. The digitized signal is then
pre-emphasized using a first-order digital filter with a coeffi-
cient of 0.95 to spectrally flatten the signal and to make it less
susceptible to finite precision effects in signal processing. The
pre-emphasized speech samples are then blocked into frames

speech
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recognition decision. The VQ method is simple but
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it ignores the (time) evolution of the vectors in the

feature space or the temporal structure of the under-
lying utterance. The hidden Markov model (HMM)
method can characterize both the temporal structure
of the vector sequence and the corresponding statis-
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Figure 4. LPC front-end processor for feature extraction.
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Figure 5. Left-to-right hidden Markov model.

of 30 ms, and frames are shifted every 10 ms. Equivalently,
there 1s an overlap of 20 ms between any two successive
frames. Each frame is multiplied by a Hamming window to
minimize the signal discontinuities at both ends of each frame
and 11 autocorrelation coefficients are derived from the win-
dowed data. After an LPC short-time spectral analysis, which
converts each frame of autocorrelations into a set of LPC coef~
ficients, the LPC coefficients are converted to corresponding
LPC cepstral coefficients in a closed form. The first 12 coeffi-
cients and the energy of frames are kept as features for recogni-
tion. LPC cepstral coefficients have been shown to be more
appropriate than LPC coefficients for speech and speaker rec-
ognition. A bandpass-liftered window is used to weigh the
cepstral coefficients for keeping only the most distinctive fea-
tures in the spectral envelope. Also, in addition to the log en-
ergy and the 12 cepstral coefficients, the first and second order
of the time derivatives of them, the so called “delta” and
“delta-delta” coefficients, are included in the feature set.

Stochastic Models

The feature vectors collected from a speaker’s enrollment session
are used to construct a statistical model for characterizing a
speaker’s voice. Several methods have been used. The template
method [9] is used to find a “prototypical” sequence of feature
vectors, or the template, to represent the utterance of 2
pass-phrase. During a test, an utterance of the same pass-phrase is
compared with the template using a dynamic time warp (DTW)
alignment procedure. The vector-quantization (VQ) method
[10] uses a speaker-dependent codebook to summarize
prototypical feature vectors of a speaker’s voice. A codebook is
generated by a clustering procedure, which is performed based
upon a predefined objective distortion measure for measuring the
similarity between any two given vectors and a given training set
of feature vectors. A set of centroids (prototypical vectors) are
generated by minimizing the total distortions between all training
vectors and their corresponding nearest centroids. In a test ses-
sion, input vectors are compared with the nearest codebook cen-
troids and corresponding distortions are measured to make a
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tical variations along the trajectory of an utterance.
This is why HMM has become widely used for
speech and speaker recognition. We review the
HMM as follows.

An HMM is a parametric statistical model. In speech and
speaker recognition, an HMM is trained (i.e., parameter esti-
mated) to represent the acoustic pattern of a subword, a word,
or a whole pass-phrase. There are many variants of HMMs.
The simplest kind is an N-state, left-to-right model without a
state skip, as shown in Fig. 5. This is the model used in all the
experiments reported in this article. The figure shows a
Markov chain with a sequence of states that models the evolu-
tion of speech signals. Within each state, an output probabil-
ity-density function (pdf) is used to statistically characterize
the observed speech feature vectors as a multivariate distribu-
tion. There are two major forms to model the underlying
pdf's: discrete and continuous pdf’s. Currently, modeling the
output pdf as a mixture of multivariate Gaussian densities is
adopted for its better mathematical tractabilities and more par-
simonious parameterization.

An HMM A can be completely characterized by a triple of
state transition probabilities A, observation densities B, and ini-
tial state probabilities I1, as shown in the following notation:

A={A, B Il}={a, , b, 7.}, ij=1..,N, (2
where N is the total number of states. Given an observation
sequence (cepstral vectors) O={o, } ", the continuous obser-
vation probability density for state j is characterized as a mix-
ture of Gaussian probabilities,

A
b(0,)=Pr(o,|j)= Y c,, N(o,;l,, R,),

o 3)
where
N(o, 1, R, )=2m) "R, [""?
exp {%(o, ~1,) "R} (o, —u,,,,,>}
4)

where M is the total number of the Gaussian components and
W, and R, are the

covariance matrix of the mth component at state j. The mix-

d-dimensional mean vector and

. . . . M
ture weights satisfy the stochastic constraint, 2 L =1

o

The model parameters {A, B,TT} of A can be trained by it-
erative methods to satisfy a given optimization criterion.
Normally the model parameters are trained to maximize the
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likelihood, Pr(O‘ A) (see next section for detail), based on a
training data set. [terative procedures such as the Baum-Welch
method (also known as the expectation-maximization (EM)
method) [11,12] have been used. Other than the maxi-
mum-likelihood (ML) criterion, the model can also be trained
by optmizing a discriminant function. For example, the mini-
mum-classification-error (MCE) criterion [13,14] was pro-
posed along with a corresponding generalized probabilistic
descent (GPD) training algorithm [15,16]. Other criteria, such
as maximum mutual information (MMI) [17,18], have also
been tried. Instead of just modeling the distribution of the data
set of the target class, the criteria also incorporate data sets of

Authentication performance can be improved
by starting with a VIV system, then gradually

adapting to an SV system.

other classes. A discriminant model is thus constructed not
only to model the underlying distribution of the target class,
but to minimize the classification error or to maximize the
mutual information between the target class and others.
The discriminant training algorithms have been applied
successfully to HMM-based speech recognition. The
MCE algorithm can also be applied to speaker recognition
[19-22].  Generally the models trained by
discriminant objective functions yield better recognition and

speaking,
verification performance.

Speech Segmentation

Given an HMM A
O= {0,},2,, the optimal state segmentation can be deter-
mined by evaluating the probabilities of all possible state se-
quences. This can be done efficiently using the Viterbi

algorithm [23, 24]. The likelihood is

and a sequence of observations

Pr{O5s, JA}= n‘m?c{ll‘[nwwbu (o')},
\ ®)

et U=t

where max, , is the Viterbi search to segment the feature

vectors into a sequence of states s optimally, in the sense of
maximum likelihood.

In utterance verification, we assume that the expected

max

word or subword sequence is known and the task is to verify
whether the input spoken utterance matches it. Similarly, in
SV, the text of the pass-phrase is known. The task is to verify
whether the input spoken utterance matches the given se-
quence. using the model trained by the speaker’s voice.

Statistical Verification

The purpose of speaker and utterance verification is to deter-
mine whether the given speech samples are from the expected
target sources or the alternatives through hypothesis testing.
The darta from the target source and the data from the alterna-

-
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tive source are used here to construc: the target and alternative
models, respectively, for the test.

In SV, the target model is a speaker-dependent model
trained on the speaker’s voice. In an open-set test, the alterna-
tive model! can be an SI model trained from a different data-
base. In a closed-set test, the alternative model can be trained
from the data of all the impostors in the set. The alternative
model is also called a general background model or cohort
model [25].

In utterance verification, a target model is trained for a spe-
cific subword, word, or phrase. The alternative model is
trained on the data selected from a set of subwords, words, or
phrases that are easily confused with the
target source in the statistical sense. In
other words, the alternative subwords or
words are in the neighborhood of the tar-
get one in the feature space.

Given the two sets of models, verifica-
tion can be approached via a statistical hy-
pothesis testing procedure. There are several decision rules for
optimal hypothesis testing under different criteria [26, 27]. For
the hypothesis testing problem, all the decision rules calculate
likelihood ratio first, then a decision can be made by comparing
the ratio with a preset threshold. Different decision rules lead
to different ways of threshold setting. Hypothesis testing can
be formulated as follows.

Let o, be an observation vector and p(o, l A, ) be the condi-
tional density function for the target class and p(o, ‘ A ) for the
alternative class. The likelihood ratio and log-likelihood ratio

are
_re]r)
JICHSS ©
and
R(0,)=logp(o | A, )~logp(o,|L,). 7)
A decision is made
Acceptance: R(o,) 2 T;
Rejection: R(o )< T, (8)

where T is the rhreshold value for the decision.

For speaker and utterance verifications, the decision 1s
made on a set of observation samples over a part of an utter-
ance or the whole utterance O = {o,}..,, and 1 is the total
number of samples used in the final decision. Following the
Neyman-Pearson lemma [28, 29}, for a given sequence of
observation vectors, the likelihood r(O) or
log-likelihood ratio R (O) are

ratio
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_yype]r,) POJA,)
r(o)'Hpm,M‘,) “PO|r,)’

i=

©)

where P(O| A,)and P(O’ A ) are likelihood for the target and
anti-models, and

. plo X))
R(O;A,,A,)= log ———
2 plo|2,)

i=i

=logP(O|LA,)~logP(O]|L,).

(10)
A decision i1s made as
Acceptance: R(O) > T,
Rejection: R(O) < T, (11

where T is a threshold value, determined theoretically or ex-
perimentally.

There are two kinds of errors in a test: false rejection (re-
jecting the hypothesis when it is true) and false acceptance (ac-
cepting it when it is false). The equal-error rate (EER), or the
error rate when the two errors are made equal by adopting the
threshold value, in an aposterior sense, is widely used in evalu-
ating verification performance.

A Speaker-Verification System
with Stochastic Matching

In this section, we first present a channel-equalization algo-
rithm [30] for SV, then introduce an SV system built on the
technology components introduced above. Among the differ-
ent SV osystems  introduced  earlier, we focus on the
fixed-phrase system [30, 31] and evaluate the system in an
open-set test. This is due to three reasons. First, a short,
user-selected phrase is easy to remember. Second, a
fixed-phrase system usually has better performance than a
text-prompted system [1]. Last, an open-set evaluation is more
appropriate for real applications. In a large-scale, tele-
phone-based banking application, it usually involves a large
user population that changes on a daily basis. It is

and the transcription are saved in the database along with the
channel statistical parameters for channel compensation dur-
ing test (30}, which will be introduced in the next session.

A block diagram of a test session is shown in detail in Fig. 6.
It illustrates how the system verifies a spoken pass-phrase. Af-
ter a speaker claims his or her identity, the system expects the
user to speak the same phrase used in the enrollment session.
The stochastic matching procedure [30] is first applied to
compensate the channel difference between training and test-
ing. The compensated feature vectors are used for computing
the target and background scores as shown in the figure.

Fast Stochastic Matching for Channel Equalization
In speaker-recognition experiments via telephone lines, the
user may switch between different telephone handsets and
transmission lines from one call to another. Possible spectral
mismatches between the training and test data can thus seri-
ously deteriorate the recognition performance. This mis-
match needs to be equalized. The distortion, as a good
approximation, can be modeled as a linear convolution in
the time domain, or equivalently, linearly additive in the
cepstral domain. To equalize such a channel difference, a
long-term cepstral average can be computed and subtracted
from the cepstral feature vectors, in both the training and the
testing data. The method, commonly called cepstral mean
subtraction (CMS) [9, 32-34], has been shown effective and
is widely used in both speech- and speaker-recognition sys-
tems. Maximum-likelihood approaches [35, 36] were also
proposed to estimate the parameters of a linear transform to
minimize such a mismatch. More sophisticated scaling and
rotational equalization methods have been proposed [30] and
they are used in conjunction with the average mean vector.
The mismatch can be modeled as a linear transform in the
cepstral domain:
y=Ax +b, (12)
where x is a vector of the cepstral frame of a test utterance; A
and b are the matrix and vector that need to be estimated for
every test utterance; and y is a transformed vector. Geomet-
rically, b represents a translation and A represents both scaling

impossible and unrealistic to train each of the SD
models using all the other users as impostors.
As shown in Fig. 2, the fixed-phrase system has

two phases, enrollment and test. During enrollment, Transform L(O, A)
~ oo Parameters Target Score ) At
LPC cepstral feature vectors corresponding to the Computation
nonsilence portion of the enrollment pass-phrases Feature | Stochastic + Threshold | 2eCiSion
. . . ) reshold |——»
are used to train an SID HMM, which characterizes Vectors Matching _
.. . Background
the phrase. In addition to model training, the text of chore
the phrase collected from the enrollment session is Computation | L(O, Ap)

- . K
transcribed into a sequence of phonemes { Sk}kﬂ s

where S, is the kth phoneme and K is the total
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number of phonemes in the sequence. The models
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Figure 6. A fixed-phrase speaker-verification system
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and rotation. When A is diagonal, it is only a scaling opera-
tion. An analysis of the reason for using a linear transformation
is beyond the scope of this article. Interested readers are re-
ferred to |37].

CMS is a fast, efficient technique for handling mismatch in
both speaker and speech recognition. It estimates b and as-
sumes A to be an identity matrix. In [32], the vector b was esti-
mated by long-term average, short-term average, and an ML
approach. In [35, 38], ML approaches were used to estimate b,
a diagonal A, and model parameters for HMMs for stochastic
matching. A least-squares solution of the linear transform pa-
rameters was briefly introduced in [37].

In |30], Li, Parthasarathy, and Rosenberg consider a gen-
eral linear transform; i.e., A is a full matrix, and b is a vector.
The approach is to have the overall distribution of test data
match the overall distribution of training data. Then, an SD
HMM trained on the training data is applied to evaluate the
details of the test data. This is based on the assumption that dif-
ferences between speakers are mainly on the details that have
been characterized by HMMs. Compared to CMS and other
bias-removal techniques {32, 36], the proposed linear trans-
form is more general since CMS and others only consider the
translation; compared to the ML approaches [32, 35, 36, 38],
the algorithm is simpler and faster since iterative techniques
are not required and the estimation of the linear transform pa-
rameters is separated from the HMM training and test.

We use Fig. 7 as a geometric interpretation of the proposed
matching algorithm. In Fig. 7(a), the dashed line is a contour of
training data. In Fig. 7(b), the solid line is a contour of test data.
Due to different channels, noise levels, and telephone transduc-
ers, the mean of the test data is translated from the training data;
the distnbution is scaled [39] and rotated from the HMM train-
ing condition. Therefore, the mismatch may cause a wrong de-
cision when using the trained HMM to score the mismatched

/,’/‘— ™ \ Rtram ‘——\\“ R|rain
fox
(a) (b)
, 7 \\\ Ryrain
Y
v X ./
AR(eSlAT
(c) (d)

Figure 7. A geometric interpretation of the fast stochastic matching.
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test data. By applying the proposed algorithm, we first find a
covariance matrix R
terizes the overall distribution approximately. Then, we find a
covariance matrix R from the test data and estimate the pa-
rameters of the A matrix for the linear transform in Eq. (12). Af-
ter applying the first transform, the overall distribution of the
test data is scaled and rotated to be same as the training data ex-
cept for the difference of the means, as shown in Fig. 7(c). In
the second step, we find the difference of the means and trans-

late the test data to the same location of the training data as

from the training data, which charac-

shown in Fig. 7(d), where the contour of the transformed test
data is more consistent with the contour of the training data.

This technique attempts to improve mismatch whether the
mismatch occurs because test and training conditions differ or
because the test and training data originate from different speak-
ers. It 1s reasonable to suppose that speaker charactenistics are
found mainly in the details of the representation. However, to
the extent that they are also found in global features, this tech-
nique would increase the matching scores between true speaker
models and imposter test utterances. Performance, then, could
possibly degrade, particularly when other sources of mismatch
are absent—that is, when test and training conditions are actu-
ally matched. However, the experiments in [30] showed that
performances overall do improve.

In a training session, we collect multiple utterances with the

same content and use a covariance matrix R and a mean

train

vector m _ to represent the overall distribution of the training

train

data of all the training utterances in a cepstral domain. They are
defined as follows:

1o 1 ¢ :
R =—) — x, —mMx. —m)",
v ST A 2 mm)(x =y

=1 AN =

13)

and

i =

train

l\ﬁf

T~

(14)

where x, , is the jth nonsilence frame in the ith training utter-
ance; U is the total number of training utterances; N, and m,
are the total number of nonsilence frames and the mean vector

of the ith training utterance, respectively; and m  is the aver-

train

age mean vector of the nonsilence frames of all training utter-

The detected by an

endpoint-detection algorithm that will be presented separately.
In a test session, only one utterance will be collected and

verified at a time. The covariance matrix for the test data is

ances. nonsilence  frames are

N,

1 o,

R = 20, = m)lr, =m)
AN =l

(15)
where y , and i, are a nonsilence frame and the mean vector

of the test data, and N, is the total number of nonsilence
frames.
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The proposed criterion for parameter estimation is to have
R, match R, through a rotation, scaling, and translation
(RST) of the test data. For rotation and scaling, we have the

following equation:

R, —-AR__A" =0,

train train

(16)

where A is defined as in Eq. (12), and R, and R are de-
fined as in Eqs. (13) and (15). By solving Eq. (16), we have the
A matrix for Eq. (12),

(17)

Then, the translation term b of Eq. (12) can be obtained by

train mrj - nllrain - i

(18)
where m,, is defined as in Eq. (14), m is a mean vector of
rotated and scaled frames, N ;s the total number of
nonsilence frames of a test utterance, and x ; is the jth cepstral
vector frame.

To verify a given test utterance against a set of true
speaker’s models (consisting of an SD HMM plus R
) first R . A, and b are calculated by using Egs. (15),
(17), and (18), then all test frames are transformed by Eq. (12)
to reduce the mismatch.

train ?

test ?

Fixed-Phrase Verification

In the block of target-score computation of Fig. 6, the speech
feature vectors are decoded into states by the Viterbi algo-
rithm (Eq. (5)), using the whole-phrase model. A
log-likelihood score for the target model (i.e., target score) is
calculated as

LO,A,) = L log P(O | A),
Ny (19)
where Q is the set of feature vectors, N ; is the total number of
vectors, A is the target model, and P(O] A,) is the likelihood
score from the Viterbi decoding.

In the block of the background score computation, a set of
SI HMMs in the order of the transcribed phoneme sequence,
A, ={A,,...,A}, is applied to align an input utterance with
the expected transcription using the Viterbi decoding algo-
rithm. The segmented utterance is O = {O,,..., O, }, where
O, is the set of feature vectors corresponding to the ith pho-
neme S, in the phoneme sequence. The background
likelihood score is then computed by

K
LO.A,)= 5—2 log PO, | A,),

IN =1

290)
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where A, = {&,}X, is a set of SI phoneme models in the or-
der of the transcribed phoneme sequence, P(O,‘}.h’ ) is the

corresponding phoneme likelihood score, and K is the total
number of phonemes.

The target and background scores are used for the follow-
ing likelihood-ratio test [31]:

R(O;A,.A)=LO,A,)—-L(O,A,), 1)
where L(O, A,) and L(O, A,) are defined in Egs. (19) and
(20), respectively.

The system has been tested on a database consisting of
fixed-phrase utterances. The database was recorded over
long-distance telephone networks by 100 speakers, 51 male
and 49 female. The fixed phrase, common to all speakers,
was “I pledge allegiance to the flag” with an average utter-
ance length of 2 seconds. Five utterances of each speaker re-
corded in one enrollment session (one telephone call) were
used to construct an SD target HMM. For testing, we used
50 utterances recorded from a true speaker in different ses-
sions (from different telephone channels and handsets at dif~
ferent times with different background noise), and 200
utterances recorded from 51 or 49 impostors of the same
gender in different sessions.

In order to further improve the SD HMM, a procedure
was employed for model adaptation. The second, fourth,
sixth, and eighth test utterances, which were recorded at
different times, from the true speaker were used to update
the means and mixture weights of the SD HMM for veri-
fying successive test utterances. For the above database,
the average individual equal-error rate over 100 speakers
was 2.6% without adaptation and 1.8% wich adaptation re-
spectively [30], as shown in Table 1. Usually, the longer
the pass-phrase, the higher the accuracy. The response
time depends on the hardware/software configuration.
For most of the cases, SV time is less than uttering the
pass-phrase.

We note that the same pass-phrase was used for all speakers
in our evaluation. This should be the lower bound of the per-
formance. The actual system performance would be better
when users choose their own, and most likely different,
pass-phrase. Also, to ensure the open-test nature, none of the
impostor’s data was used for training an SD target model by
discriminant training.

A 2falie # a O

| without Adaptation | With Adaptation’
 Fixed Pass-Phrase o B
. Speaker Verification

261% | 180%

’eStékdﬁri fleQfsp"eékerﬁ"(x’ssi"ng:‘ohe common paésephré'éé.) L 1
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Decision
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the other speakers as impostors. The experimental
results are shown in Table 2. When a speaker is veri-
fied using three questions, the VIV system achicved
0% average imdividual equal-error rate, with a
speaker-dependent threshold set for each individual
mformation ficld.

Ina VIV system, we assume that the user protects
his or her personal information from impostors. In
other words, an imposter can break into a VIV sys-

Figure 8. Verification approach for VIV.

VIV System
In this section, we briefly present a VIV system based on the
utterance-verification approach. Details of the system can be
found in (2, 3].

We implemented a VIV system that authenticates a speaker
by asking three questions sequentially as shown in Fig 3. The
answer to cach of the three questions is verified by utterance
verification. If all three questions are correctly answered, the
speaker 1s accepted; otherwise, the speaker is rejected and no
further questions are asked.

A block diagram of the utterance-verification approach is
shown in Fig. 8. Similar to SV, the voice response to a ques-
tion is first aligned with a sequence of corresponding tran-
scribed phonemes of the correct answer using ST HMMs.
Then, for each of the phonemes, the likelihood scores of the
corresponding SI HMM and anti-HMMs are compared for
hypothesis testing. Furthermore, a confidence measure is
formed by combining the hypothesis test scores on each pho-
neme into an utterance-level score for decision. A confidence
measure can be a linear or nonlinear function of the likelihood
scores of each phoneme. An example of the confidence mea-
sure 1s

N —_
a=L 2\% [log PO, | 1,) ~log PO, | X, )]
‘ (22)

m=1 4Ny

where K is the total number of phonemes, O |, is the segmented

feature set for subword i with N, feature vectors, and A, and

A, are the target and anti-models for the mth phoneme. The
anti-model 1s trained using the data that are near the target pho-
neme in the feature space as described in the “Stochastic
Models” section [4]. Variations of confidence measures can be
found in [2, 7].

The VIV system has been
evaluated on a database of

tem by using the true speaker’s information. To im-
prove the security, a VIV system can randomly ask
for a subset of personal information for each access.
For example, the user registers six items in the profile, and
each time the system randomly picks three for verification.
Furthermore, the system can ask dynamic information regis-
tered in past transactions, such as the date or the amount of the
last deposit. As proposed in [3], a speaker authentication sys-
tem can also start with a VIV system, then adapt gradually to
an SV system to further improve the authentication pertor-
mance. The traditional SV enrollment, which requires the
speaker to register multiple voice utterances before he/she can
use the system, can thus be avoided.

Conclusions

The common technique used in the above SV and VIV sys-
tems 1s statistical hypothesis testing. By employing the back-
ground models [25] (Fig. 6) and/or the anti-models [4], the
verification module tests two competing hypotheses, and the
system performance is improved significantly over the systems
without hypothesis testing.

SV and VIV are the two most practical approaches to
speaker authentication. The performances of lab data indicate
that both systems are ready for real-world applications. A sys-
tem incorporating both SV and VIV, being able to provide
higher flexibility and security, is even more attractive [3].
Also, different levels of security requirement can be provided
by varying the system parameter, complexity, and the enroll-
ment procedure.
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100 speakers. Each speaker in False False ;
- Equal-Error i

the database was tested both | Approach Rejection Acceptance Rate |

as a true speaker and an im- 5 on 3 Utterances 1 on 3 Utterances |

poster.  Thus, for ecach Utterance

. ker. we h h _ o 0% 0% 0%

speaker, we have three utter Verification

ances from the true speaker
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