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ABSTRACT transform and the inverse transform. Despite its simpliaitd ef-

A new auditory-based feature extraction algorithm for sitapeech ~ficient computation algorithms, when applied in speech gssing,
recognition is developed from modeling the signal proceséinc-  the time-frequency decomposition mechanism of the FT iemslif
tions in the hearing System. Usua”y, the performance ofistio ent from.the meCha.nism in the he.al’ing System. .First, it U.Xed'ﬁ
models trained in clean speech drops significantly wheredesh  length windows, which generate pitch harmonics in the ersjireech
noisy Speech; thus recognition Systems cannot work rqbusthe bands. Second, its individual frequency bands have linestri-d
f|e|d even When they have good performance in |absl To addreg]tion, which is different from the nonlinear distributionhuman
the problem, we have developed features based on a set ofesoducochlea. Finally, in our recent study we demonstrated the=FT
to simulate the signal processing functions in the coctdeah as ~ SPectrogram has more noise distortion and more computatitse
auditory transform, hair cells, and equal-loudness fomsti The  than our auditory-based transform; thus, it is natural teettgp new
features are then applied to the Wall Street Journal taskirfiolate ~ features based on our new auditory-based, time-frequeacgform
the performance in the field, the training data is near clgmech  [4]. to address the above concerns in the FFT.

while the testing data are with added white and babble nokse.
shown in our experiments, without added noise, the propésad
tures have a similar performance as MFCC, RASTA-PLP, and PLIg
features. When we added noise and tested at different SNds)ev
the performance of the proposed auditory features is sigmifiy
better than others. For example, at 10 dB SNR level whichtenof
encountered in real applications, the performance of tbpqsed
auditory features is 65.53% while the best from others i83%.
from the RASTA-PLP. The proposed features provide an absolu
gain on recognition accuracy of 29.20%. Overall, our experits
show that the proposed auditory features have strong nodsstin
the mismatched and noisy situations in speech recognition.

In auditory research, the traveling wave of the basilar nremd
BM) in the cochlea and its impulse response have been daxserv
and reported in the literature, e.g. [5]. Moreover, the BMitg
and auditory filters have also been studied in the literatug [6].
Many electronic and mathematic models have been definednto si
ulate the traveling wave, the auditory filters, and the feeqpy re-
sponses of the BM, e.g. [7]. Also, there are models to model th
entire auditory system, e.g. [8] and references thereire Gam-
matone filter [9] has been used as a cochlear model to decempos
speech signals into the output of a number of frequency hdnds
there is no proof to its inverse transform. To provide an iive
ible auditory-based transform, Li redefined the Gammatmased
Index Terms— Speech feature extraction, auditory-based feadilter bank, thus proving the inverse transform [4]. The reawditory

ture, robust speech recognition, cochlea, auditory toansf transform(AT) includes a pair of a forward transform and an inverse
transform.
1. INTRODUCTION Compared to the FFT, the AT has flexible time-frequency reso-

c . h . S hnol id lution and its frequency distribution can take on any lingamonlin-
urrent automatic speech recognition (ASR) technologypeanide ear scales. It is easy to implement a distribution to be aintd that

_good p_erforn_wance in clean or very low r_lc_)ise t_anvirqn_rnenmm of the Bark, Mel, or ERB scale, which is similar to the freqogn
In a quiet office, or when acoustic conditions in training @@a(Ch  yigyify tion of the BM. Most importantly, the AT has signéiat ad-
the conditions in testing. A.‘SR performance may drop S'gmﬂy vantages in noise robustness and is free from the pitch hacrdis-
or a system may stop working when encountering backgrourno i a5 piotted in [4]. Compared to the Gammatone filtetkba
or V\t/)r|1en thedmllsma;ch ali)r)]earks). Thzre are r.nané/.fvaays t0 adtEess e fijter handwidth is locked to the band central frequendyle in
problem and a lot of work has been done using different ApDER o AT, the filter bandwidth can be adjusted easily by chamgipa-
Since the human hearing system is robust, our approach Wak as 5 eter. Aswe have observed in our experiment, adjustimgand-
lows: first, model the hearing system, and second, develaprie width can improve ASR performance. Given the above analysis

extraction algorithms based_ on our hearing quels. use AT as the first module when modeling the cochlear system an
Our research started with a study of the time frequency trans

form in the cochlea and then extended to other functionsamgar- ﬁggr;ﬁgzzssrgrﬁl.mulate the major signal processing funetionthe

ing system. The proposed auditory features are an outcortigsof

research. In this paper, we present new auditory features based oreeur r
The fast Fourier transform (FFT) is the time frequency trans cent hearing research in a more complete signal proceskitfgmm

form used in popular MFCC [1], PLP [2] and RASTA-PLP [3] fea- to model the hearing system. These lead to the features witarb

tures. The FFT has a fixed time-frequency resolution and & wel performance than the previously published one [10]; tlweesfwe

defined inverse transform. Fast algorithms exist for bottfoiward ~ named the new one agw auditory featureas presented below.



2. HEARING MODELS AND FEATURE EXTRACTION Since we construap, »(t) with the lowest frequency along the time
axis, the value ofi isin 0 < a < 1. If we stretchy, the value of
An illustrative block diagram of the proposed hearing moiel ¢ isina > 1. The frequency distribution of the cochlear filter can
shown in Fig. 1. It consists of the following modules: the iaud be in the form of linear or nonlinear scales such as ERB (edpnit
tory transform (AT), energy normalization, Meddis hairleabdel,  rectangular bandwidth) [13], Bark [14], mel scale [1], letg. Note
equal-loudness function, windowing, loudness nonlirigaaind dis-  that the values of the need to be pre-calculated for all required
crete cosine transform (DCT). Except for DCT, all the modidee  central frequency of the cochlear filter.
for modeling the signal processing functions in the heasiygfem. As shown in [4], the spectrograms generated from the AT are
To facilitate the following discussions, we name the newtfes  free from harmonics, have much less computation noise, @nba
from the model asauditory feature cepstral coefficien{&FCC). bust to background noise compared to the spectrogramsajeder
Compared to the auditory features in [10], we added four fesdu from the FFT. In numerical computation, the AT output can ége r
so this frontend is also a model for the hearing system anfueba  resented ag'(i, n), wherei represents the number of the frequency

feature extraction algorithm. band and represents discrete time. Since we are not using energy
in the following computation, the gain of the auditory fiken the
Speech Auditory Energy Equal AT may ne_ed to be renormalized. _ o
Transform Normalization Loudness Following the AT, an equal-loudness function [15]3), is ap-
plied to each band of the AT output:
Modified
Meddis E(i,n) = g(1)T(i,n) Vi,n (6)
Model
whereg(.) is actually a weighting function on the different frequency
AFCC Loudness ' ) bands.
-« DCT Nonli it Windowing . . .
oniineartty In the hearing system, the inner hair cells act to transduee m

chanical movements into neural activities. When the BM rsaye
Fig. 1. Diagram of the proposed auditory-based feature extractio@nd down, a shearing motion is created between the BM anécthe t
algorithm for ASR. torial membrane [16]. This causes the displacement of tits b
the tops of the hair cells which generates the neural sigha¥gever,
The auditory filter bank in the AT simulates the frequency re-the hair cells only generate the neural signals in one daect the
sponse of the BM in the cochlea [4]. L¢t(t) be any square in- BM movemeqt. When the BM moves in the oppoglte dlregtlomgthe
tegrable function. A transform of (t) with respect to a function IS neither excitation nor neuron output. We applied the Medair
representing the basilar membrane (BM) impulse resparisgis cell model [17] to our computation which includes a feedblacip.

defined as: For our applications, we applied the following constraimghsure
that the model output is not negative.
it 1 b—t
T(a,b) = /m f(t)ﬁw ( - ) dt, @ M(in) = m[E(i,n)] if E(i,n) >0 @
’ 0 otherwise

wherea andb are real, bothf(t) and«(t) belong toL?(R), and . .
T'(a,b) represents the traveling waves in the BM. The above equaWhere the Meddis model is .representedr&(s). .
In the next step, the hair cell output for each band is coadert

tion can also be written as: . ! . . :
into a representation of nerve spike count density. To sfypple
Tla.b) — Oba (8) dt 2 use a shifting window to represent the function. The windanct
(a,0) /,oo F@)¢as(®) dt, ) tion with length? can be represented as:

where nj+€-1

1
Gan(t) = 1 (b_t) . @) 5(,9) =5 > M(i,n) ®)
Factora is a scale or dilation variable. By changingwe can shift
the central frequency of an impulse response function. dfacis
a time shift or translation variable. For a given valuezofactorb
shifts the function),,o(t) by an amounb along the time axis.

The window length can be in 20 - 30 ms and shit 10 ms at each step.
Furthermore, we apply the scales of loudness function sigde
by Stevens [18, 19] to the hair cell output as:

The auditory filter in the AT is defined as: Y(i,5) = S@, 7). 9)
Yap(t) = L (ﬂ) “ exp |:—27TfLB (E)] This operation implements cubic root nonlinearity to matiel per-
’ \/W a ceived loudness. In the last step, DCT is applied to deaige¢he
¢ feature dimensions and generates the auditory filter c@p=ieffi-
cos |:27TfL (—) + 9] u(—t), (4)  cients (AFCC) as our new auditory-based speech featuresiotée

that in software implementation, the order of the above agatpn

wherea > 0 andB > 0, u(t) is the unit step function, i.eu(t) = 1 can be changed for fast and efficient computation.
for ¢ > 0 and0 otherwise.d = 0.

The value ofa can be determined by the current filter central 3. EXPERIMENTS
frequency,f., and the lowest central frequencf,, in the auditory
filter bank: To investigate the performance of the proposed auditotyfes, we

a= fr/fe. 5) used large vocabulary recognition corpus Wall Street Wi SJ0)



as the original speech data. To simulate a distant talkiegaso us-
ing a handheld device or hands-free application, the algitata
was played from an artificial mouth and recorded using a micro
phone array from a distance of 0.5 meter in a standard officero

The microphone array named Crispl&M is a small, linear array
with four microphone components [20, 21]. The re-recordeSJW
corpus was then partitioned to training, development, astirg
data sets without any overlap. The utterances defined in S¥&4-
[22] were used as our training set in which 7,138 utteranoas f
3,586 males and 3,552 females are included. The test setullas b
based on the standard Nov 92 test set [22] with 330 test nttesa
A development set from the Nov 92 speaker-dependent testaset
used to tune parameters, in which 310 utterances are irttludee
dictionary includes 5,000 word vocabularies. Cross-wtriiehhone
acoustic models were trained, and a bi-gram language moael w
used in all the experiments. To evaluate the performanceigyand
mismatched conditions, we added white and babble noisetprd:

recorded data with a SNR of 5dB, 10dB, 15dB, and 20dB, respec-

tively. We named the original WSJ corpus as the original sktta
the microphone array recorded datasets as the distanetiatasd
the white and babble noise added datasets as the noisy tdatase
the following discussions. The original dataset was notluseur
experiments.

The sampling frequency of the distant dataset is 16 kHz. Heor t
MFCCs, RASTA-PLP, and PLP thirteen dimensional cepstraf-co
ficients and their first and second order time derivativesewesed
in the acoustic model training and testing. For the propddedCs,
we investigated the 9 to 13 dimensions of the cepstral cosftic
in the development set using the distant dataset. The befsrpe

mance was obtained at 10 dimensional AFCC which is energy plu

9 dimensional cepstral coefficients while other dimensilae pro-
vide similar performances. Thus, we use 30 dimensional ARCC
total in our experiments including base, first and seconeératiche
derivatives, which are 9 dimensions fewer than the MFCQufeat
We note that for a fair comparison, we used the popular HTKkibo
to generate the MFCC and PLP features with cepstral meanatorm
ization (CMN). For RASTA-PLP, we use the exactly the code dow
loaded from [23] with the same experimental setup as destriip

[3].

Table 1. Comparison on Test Set with Added White Noise in Word
Accuracy (%)

Testing SNR 5dB | 10dB | 15dB | 20dB | Clean
AFCC (Proposed) 36.02 | 65.53 | 78.95 | 85.34| 89.20
MFCC 10.61| 31.76 | 64.99 | 82.22 | 90.88
RASTA-PLP 12.89 | 36.33 | 66.02 | 80.40 | 87.46
PLP 1291 | 35.10 | 66.11 | 82.70| 91.01

Table 2. Comparison on Test Set with Added Babble Noise in Word
Accuracy (%)

Testing SNR 5dB | 10dB | 15dB | 20dB | Clean
AFCC (Proposed) 35.92 | 73.06 | 84.2 | 87.99| 89.20
MFCC 28.1 | 63.68 | 81.73 | 88.59 | 90.88
RASTA-PLP 21.17| 52.90 | 76.46 | 84.91 | 87.46
PLP 26.90 | 61.85| 81.90 | 88.29 | 91.01

put is a rectified and processed waveform. A moving windoést
applied to each channel. The window length is 25 ms and ghifts
ery 10 ms. The window output is the average value of the wanefo
in the window. The window output then goes through the losdne
nonlinearity. Finally, since most back-end systems adagahal
Gaussian, the DCT is used to decorrelate the features. FOCAF
we use the energy term cO plus nine coefficients c1 to c9 a%fhe c
stral coefficients.

In our evaluation, in the first step, the AFCC feature paranset
were adjusted in the development dataset without added.noishe
second step, all features were generated using the noiayedst As
noises with increasing intensities were added to the disemting
dataset, the performance of the AFCC improved significathiiy
other feature performances. Tables 1 and 2 summarize thpazem
ison on different features on the speaker independent ASRag
different SNR levels. The overall performance is shown igsFi2
and 3. Overall, we see that the proposed AFCC features dotper
other features in noisy speech recognition.

CMN was used for all 4 features. We did not use the Wiener

filter or spectral subtraction based noise reduction algms in any
one of the features for fair comparison. The same speecllsign
were inputted to each one of the feature extraction softpackages
directly.

4. CONCLUSIONS

New auditory-based features for robust large-vocabulgsesh
recognition were proposed in this paper. The new featuesan-

Regarding acoustic models, tri-phoneme models were usgd arptructed by modeling the signal-processing functions étthman
each mode has three hidden Markov model (HMM) states. Th&earing system. Our experiments suggest that under notsynas
model structures are the same for both MFCC and AFCC featuré®atched acoustic conditions, the new features consigtpatform

although AFCC feature vector has fewer dimensions. All tmia-
tic models were trained only using the distant dataset asteéden
both distant and noisy datasets.

better than the MFCC, RASTA-PLP, and PLP features. Our mod-
els of the hearing system should make a significant contoibubd
speech recognition robustness.

Regarding language models, we did not tune the languagelmode

parameters, such as word insertion penalty and grammarfacabr.
The language models were the same for all experiments.
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