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ABSTRACT
A new auditory-based feature extraction algorithm for robust speech
recognition is developed from modeling the signal processing func-
tions in the hearing system. Usually, the performance of acoustic
models trained in clean speech drops significantly when tested on
noisy speech; thus recognition systems cannot work robustly in the
field even when they have good performance in labs. To address
the problem, we have developed features based on a set of modules
to simulate the signal processing functions in the cochlea,such as
auditory transform, hair cells, and equal-loudness functions. The
features are then applied to the Wall Street Journal task. Tosimulate
the performance in the field, the training data is near clean speech
while the testing data are with added white and babble noise.As
shown in our experiments, without added noise, the proposedfea-
tures have a similar performance as MFCC, RASTA-PLP, and PLP
features. When we added noise and tested at different SNR levels,
the performance of the proposed auditory features is significantly
better than others. For example, at 10 dB SNR level which is often
encountered in real applications, the performance of the proposed
auditory features is 65.53% while the best from others is 36.33%
from the RASTA-PLP. The proposed features provide an absolute
gain on recognition accuracy of 29.20%. Overall, our experiments
show that the proposed auditory features have strong robustness in
the mismatched and noisy situations in speech recognition.

Index Terms— Speech feature extraction, auditory-based fea-
ture, robust speech recognition, cochlea, auditory transform.

1. INTRODUCTION

Current automatic speech recognition (ASR) technology canprovide
good performance in clean or very low noise environments, such as
in a quiet office, or when acoustic conditions in training canmatch
the conditions in testing. ASR performance may drop significantly
or a system may stop working when encountering background noise
or when the mismatch appears. There are many ways to address the
problem and a lot of work has been done using different approaches.
Since the human hearing system is robust, our approach was asfol-
lows: first, model the hearing system, and second, develop feature
extraction algorithms based on our hearing models.

Our research started with a study of the time frequency trans-
form in the cochlea and then extended to other functions in the hear-
ing system. The proposed auditory features are an outcome ofthis
research.

The fast Fourier transform (FFT) is the time frequency trans-
form used in popular MFCC [1], PLP [2] and RASTA-PLP [3] fea-
tures. The FFT has a fixed time-frequency resolution and a well-
defined inverse transform. Fast algorithms exist for both the forward

transform and the inverse transform. Despite its simplicity and ef-
ficient computation algorithms, when applied in speech processing,
the time-frequency decomposition mechanism of the FT is differ-
ent from the mechanism in the hearing system. First, it uses fixed-
length windows, which generate pitch harmonics in the entire speech
bands. Second, its individual frequency bands have linear distri-
bution, which is different from the nonlinear distributionin human
cochlea. Finally, in our recent study we demonstrated that the FFT
spectrogram has more noise distortion and more computationnoise
than our auditory-based transform; thus, it is natural to develop new
features based on our new auditory-based, time-frequency transform
[4], to address the above concerns in the FFT.

In auditory research, the traveling wave of the basilar membrane
(BM) in the cochlea and its impulse response have been observed
and reported in the literature, e.g. [5]. Moreover, the BM tuning
and auditory filters have also been studied in the literature, e.g. [6].
Many electronic and mathematic models have been defined to sim-
ulate the traveling wave, the auditory filters, and the frequency re-
sponses of the BM, e.g. [7]. Also, there are models to model the
entire auditory system, e.g. [8] and references therein. The Gam-
matone filter [9] has been used as a cochlear model to decompose
speech signals into the output of a number of frequency bands, but
there is no proof to its inverse transform. To provide an invert-
ible auditory-based transform, Li redefined the Gammatone-based
filter bank, thus proving the inverse transform [4]. The newauditory
transform(AT) includes a pair of a forward transform and an inverse
transform.

Compared to the FFT, the AT has flexible time-frequency reso-
lution and its frequency distribution can take on any linearor nonlin-
ear scales. It is easy to implement a distribution to be similar to that
of the Bark, Mel, or ERB scale, which is similar to the frequency
distribution of the BM. Most importantly, the AT has significant ad-
vantages in noise robustness and is free from the pitch harmonic dis-
tortion as plotted in [4]. Compared to the Gammatone filter bank,
the filter bandwidth is locked to the band central frequency,while in
the AT, the filter bandwidth can be adjusted easily by changing a pa-
rameter. As we have observed in our experiment, adjusting the band-
width can improve ASR performance. Given the above analysis, we
use AT as the first module when modeling the cochlear system and
add others to simulate the major signal processing functions in the
hearing system.

In this paper, we present new auditory features based on our re-
cent hearing research in a more complete signal processing platform
to model the hearing system. These lead to the features with better
performance than the previously published one [10]; therefore, we
named the new one asnew auditory featuresas presented below.



2. HEARING MODELS AND FEATURE EXTRACTION

An illustrative block diagram of the proposed hearing modelis
shown in Fig. 1. It consists of the following modules: the audi-
tory transform (AT), energy normalization, Meddis hair cell model,
equal-loudness function, windowing, loudness nonlinearity, and dis-
crete cosine transform (DCT). Except for DCT, all the modules are
for modeling the signal processing functions in the hearingsystem.

To facilitate the following discussions, we name the new features
from the model asauditory feature cepstral coefficients(AFCC).
Compared to the auditory features in [10], we added four modules
so this frontend is also a model for the hearing system and notjust a
feature extraction algorithm.
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Fig. 1. Diagram of the proposed auditory-based feature extraction
algorithm for ASR.

The auditory filter bank in the AT simulates the frequency re-
sponse of the BM in the cochlea [4]. Letf(t) be any square in-
tegrable function. A transform off(t) with respect to a function
representing the basilar membrane (BM) impulse responseψ(t) is
defined as:
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wherea and b are real, bothf(t) andψ(t) belong toL2(R), and
T (a, b) represents the traveling waves in the BM. The above equa-
tion can also be written as:
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Factora is a scale or dilation variable. By changinga, we can shift
the central frequency of an impulse response function. Factor b is
a time shift or translation variable. For a given value ofa, factorb
shifts the functionψa,0(t) by an amountb along the time axis.

The auditory filter in the AT is defined as:
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whereα > 0 andβ > 0, u(t) is the unit step function, i.e.u(t) = 1
for t ≥ 0 and0 otherwise.θ = 0.

The value ofa can be determined by the current filter central
frequency,fc, and the lowest central frequency,fL, in the auditory
filter bank:

a = fL/fc. (5)

Since we constructψa,b(t) with the lowest frequency along the time
axis, the value ofa is in 0 < a ≤ 1. If we stretchψ, the value of
a is in a > 1. The frequency distribution of the cochlear filter can
be in the form of linear or nonlinear scales such as ERB (equivalent
rectangular bandwidth) [13], Bark [14], mel scale [1], log,etc. Note
that the values of thea need to be pre-calculated for all required
central frequency of the cochlear filter.

As shown in [4], the spectrograms generated from the AT are
free from harmonics, have much less computation noise, and are ro-
bust to background noise compared to the spectrograms generated
from the FFT. In numerical computation, the AT output can be rep-
resented asT (i, n), wherei represents the number of the frequency
band andt represents discrete time. Since we are not using energy
in the following computation, the gain of the auditory filters in the
AT may need to be renormalized.

Following the AT, an equal-loudness function [15],g(i), is ap-
plied to each band of the AT output:

E(i, n) = g(i)T (i, n) ∀i, n (6)

whereg(.) is actually a weighting function on the different frequency
bands.

In the hearing system, the inner hair cells act to transduce me-
chanical movements into neural activities. When the BM moves up
and down, a shearing motion is created between the BM and the tec-
torial membrane [16]. This causes the displacement of the hairs at
the tops of the hair cells which generates the neural signals; however,
the hair cells only generate the neural signals in one direction of the
BM movement. When the BM moves in the opposite direction, there
is neither excitation nor neuron output. We applied the Meddis hair
cell model [17] to our computation which includes a feedbackloop.
For our applications, we applied the following constrains to ensure
that the model output is not negative.

M(i, n) =

{

m[E(i, n)] if E(i, n) > 0
0 otherwise

(7)

where the Meddis model is represented asm(.).
In the next step, the hair cell output for each band is converted

into a representation of nerve spike count density. To simplify, we
use a shifting window to represent the function. The window func-
tion with lengthℓ can be represented as:

S(i, j) =
1

ℓ

nj+ℓ−1
∑

n=nj

M(i, n) (8)

The window length can be in 20 - 30 ms and shit 10 ms at each step.
Furthermore, we apply the scales of loudness function suggested

by Stevens [18, 19] to the hair cell output as:

Y (i, j) = S(i, j)1/3. (9)

This operation implements cubic root nonlinearity to modelthe per-
ceived loudness. In the last step, DCT is applied to decorrelate the
feature dimensions and generates the auditory filter cepstral coeffi-
cients (AFCC) as our new auditory-based speech features. Wenote
that in software implementation, the order of the above computation
can be changed for fast and efficient computation.

3. EXPERIMENTS

To investigate the performance of the proposed auditory features, we
used large vocabulary recognition corpus Wall Street Journal (WSJ0)



as the original speech data. To simulate a distant talking scenario us-
ing a handheld device or hands-free application, the original data
was played from an artificial mouth and recorded using a micro-
phone array from a distance of 0.5 meter in a standard office room.

The microphone array named CrispMicTM is a small, linear array
with four microphone components [20, 21]. The re-recorded WSJ
corpus was then partitioned to training, development, and testing
data sets without any overlap. The utterances defined in WSJ-SI84
[22] were used as our training set in which 7,138 utterances from
3,586 males and 3,552 females are included. The test set was built
based on the standard Nov 92 test set [22] with 330 test utterances.
A development set from the Nov 92 speaker-dependent test setwas
used to tune parameters, in which 310 utterances are included. The
dictionary includes 5,000 word vocabularies. Cross-word,tri-phone
acoustic models were trained, and a bi-gram language model was
used in all the experiments. To evaluate the performance in noisy and
mismatched conditions, we added white and babble noise to the pre-
recorded data with a SNR of 5dB, 10dB, 15dB, and 20dB, respec-
tively. We named the original WSJ corpus as the original dataset,
the microphone array recorded datasets as the distant datasets, and
the white and babble noise added datasets as the noisy datasets in
the following discussions. The original dataset was not used in our
experiments.

The sampling frequency of the distant dataset is 16 kHz. For the
MFCCs, RASTA-PLP, and PLP thirteen dimensional cepstral coef-
ficients and their first and second order time derivatives were used
in the acoustic model training and testing. For the proposedAFCCs,
we investigated the 9 to 13 dimensions of the cepstral coefficients
in the development set using the distant dataset. The best perfor-
mance was obtained at 10 dimensional AFCC which is energy plus
9 dimensional cepstral coefficients while other dimensionsalso pro-
vide similar performances. Thus, we use 30 dimensional AFCCin
total in our experiments including base, first and second order time
derivatives, which are 9 dimensions fewer than the MFCC features.
We note that for a fair comparison, we used the popular HTK toolkit
to generate the MFCC and PLP features with cepstral mean normal-
ization (CMN). For RASTA-PLP, we use the exactly the code down-
loaded from [23] with the same experimental setup as described in
[3].

CMN was used for all 4 features. We did not use the Wiener
filter or spectral subtraction based noise reduction algorithms in any
one of the features for fair comparison. The same speech signals
were inputted to each one of the feature extraction softwarepackages
directly.

Regarding acoustic models, tri-phoneme models were used and
each mode has three hidden Markov model (HMM) states. The
model structures are the same for both MFCC and AFCC features
although AFCC feature vector has fewer dimensions. All the acous-
tic models were trained only using the distant dataset and tested in
both distant and noisy datasets.

Regarding language models, we did not tune the language model
parameters, such as word insertion penalty and grammar scale factor.
The language models were the same for all experiments.

Based on the discussion in the last section, the details on the
AFCC feature extraction can be summarized as follows: First, the
speech waveform is passed through the auditory filter bank which is
the forward transform of the AT. The filter width parameterβ is set
to 0.15. The Bark scale is used for the filter bank distribution. En-
ergy normalization can be applied to ensure the energy representa-
tion of each channel of the filter output matches and equal-loudness
function can be applied at this stage. Following that, the modified
Meddis model is applied to further process the waveform. Theout-

Table 1. Comparison on Test Set with Added White Noise in Word
Accuracy (%)

Testing SNR 5 dB 10 dB 15 dB 20dB Clean
AFCC (Proposed) 36.02 65.53 78.95 85.34 89.20
MFCC 10.61 31.76 64.99 82.22 90.88
RASTA-PLP 12.89 36.33 66.02 80.40 87.46
PLP 12.91 35.10 66.11 82.70 91.01

Table 2. Comparison on Test Set with Added Babble Noise in Word
Accuracy (%)

Testing SNR 5 dB 10 dB 15 dB 20dB Clean
AFCC (Proposed) 35.92 73.06 84.2 87.99 89.20
MFCC 28.1 63.68 81.73 88.59 90.88
RASTA-PLP 21.17 52.90 76.46 84.91 87.46
PLP 26.90 61.85 81.90 88.29 91.01

put is a rectified and processed waveform. A moving window is then
applied to each channel. The window length is 25 ms and shiftsev-
ery 10 ms. The window output is the average value of the waveform
in the window. The window output then goes through the loudness
nonlinearity. Finally, since most back-end systems adopt diagonal
Gaussian, the DCT is used to decorrelate the features. For AFCCs,
we use the energy term c0 plus nine coefficients c1 to c9 as the cep-
stral coefficients.

In our evaluation, in the first step, the AFCC feature parameters
were adjusted in the development dataset without added noise. In the
second step, all features were generated using the noisy datasets. As
noises with increasing intensities were added to the distant testing
dataset, the performance of the AFCC improved significantlythan
other feature performances. Tables 1 and 2 summarize the compar-
ison on different features on the speaker independent ASR task at
different SNR levels. The overall performance is shown in Figs. 2
and 3. Overall, we see that the proposed AFCC features outperform
other features in noisy speech recognition.

4. CONCLUSIONS

New auditory-based features for robust large-vocabulary speech
recognition were proposed in this paper. The new features are con-
structed by modeling the signal-processing functions in the human
hearing system. Our experiments suggest that under noisy and mis-
matched acoustic conditions, the new features consistently perform
better than the MFCC, RASTA-PLP, and PLP features. Our mod-
els of the hearing system should make a significant contribution to
speech recognition robustness.
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Fig. 2. Word accuracies of features tested on speech with white
noise.
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