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Abstract— In this paper, we present a fast training al-
gorithm with which one can sequentially determine
the needed hidden nodes and the values of the associ-
ated weights for classification and pattern recognition.
This new approach addresses problems in backpropa-
gation and other gradient descent training algorithms.
These problems include long training times, and the
determination of the proper number of hidden nodes.
We mitigate these difficulties by sequentially extract-
ing important attributes of the training data in train-
ing each hidden node.

The proposed algorithm separates the network train-
ing into the training of each layer of the network. The
input layer is designed to partition the input data
space using linear discriminant functions. The train-
ing starts from one hidden node. By applying a linear
discriminant algorithm, a separable subset of the data
is deleted from the training set. The remaining data is
carried over to the training of the next hidden nodes.
A hidden node is added to the network when it is
needed because the classification performance on the
training set is not yet good enough. Thus the training
data set is reduced sequentially while the training is
in progress. Each node of the output layer performs
a logic function of the binary outputs of the hidden
nodes. The training algorithm for the output layer is
same as Boolean minimization.

I. INTRODUCTION

NEURAL networks have been applied to solve many
classification and pattern recognition problems. Cur-
rently, most training criteria and learning rules are
defined based on the principle of minimizing the dis-
tance between the desired output vector and actual
output vector. The related learning algorithms are
developed based on gradient descent methods, such
as backpropagation [1], and many other improved
versions. As pointed in [2-3] and by other researchers,
there are a number of practical concerns for gradient
training algorithms. First, the basic training algo-
rithms [1] can only determine the number of hidden
nodes by retraining many times with different num-
bers of nodes. Second, the training often converges
into a local instead of a global minimum. And third,
the gradient-based training usually takes a long time.

Many researchers have addressed these problems.
To determine the number of hidden nodes, several
pruning algorithms have been developed (see {4] for
a survey), but training must be started with more
than the needed hidden nodes. As gradient-based
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methods, convergence and training time are still a
problem. In [3], Wilson, Umesh, and Tufts proposed
a design method to compute the number of hidden
nodes and initial weights. The method reduced the
training time in the backpropagation. It is shown by
examples below that the method of this paper can
be applied to classification problems for which the
method of [3] is not efficient,.

In [7-9], several training algorithms are developed
based on the concept of using hidden nodes to parti-
tion the input space. However, the methods in [7-§]
use more hidden nodes than needed. The method
in [9] did not show a solution for the case in which
training patterns are not linearly separable.

In 1938 Fisher presented his concept of linear dis-
criminant analysis, which is well described in refer-
ences [5] and [6]. Unlike the conventional applica-
tions of discriminant analysis, we apply the analysis
recursively to successive data residuals and evaluate
performance on the training data after each step to
decide whether to stop or continue the design. A sim-
ilar approach for a different tree structure has been
advocated by Lee et al. [13)].

In this paper, we present a method which is ap-
plicable to a wide of class of classification problems
and which further simplifies the determination of the
required structure and complexity of the neural net-
work. In our new approach, each input pattern is a
vector of n numbers x = [z, z,, ..., 2]}, each hid-
den node has a corresponding n — 1 dimensional hy-
perplane in the input space. As shown in Figure 1,
the hyperplane H is characterized by (1) the line L
through the origin which is perpendicular to the hy-
perplane and (2) a threshold 8, which is the value of
the projection of any point of the hyperplane onto
the line. If w = [wy, ws, ..., w,]' is a vector of unit
length which is on the line, then any point in the
hyperplane must satisfy the equation E?=l Tiw; =0
in which 6 is the threshold values. Using the inner
product, we rewrite the equation as xtw=4.

The new method sequentially trains hidden nodes
one by one. After we find that another hidden node
is needed, it is trained by calculating a new linear dis-
criminant function [5-6] for a new line-vector w and



Figure 1, Weight vector and hyperplane of one hidden node.

further determining the threshold . When a hidden
node is trained, its hyperplane partitions the input
space into two subsets, H* and H™~. A satisfied sub-
set is deleted from the training set and the remaining
data becomes a new training set for the discriminant
analysis of next hidden node. The training continues
until the classification performance on the training
data set is satisfactory. The hyperplanes of the hid-
den nodes separate the training data into clusters.
Depending on desired performance, all or most of the
data vectors in each cluster belongs to one class. The
output nodes are logic functions of the binary output
of the hidden nodes. The binary outputs of each node
specify that the input data vector lies above or below
that hidden node’s hyperplane. Sometimes the num-
ber of hidden nodes and number of binary outputs of
hidden layer can be further reduced by Boolean min-
imization when designing the logic function of the
output node for a minimal implementation.

II. AN EXAMPLE OF DISCRIMINANT
DESIGN AND TRAINING

We choose an example considered very recently in [7)
to present the new design method. Example 3 of that
paper has two classes of training data as shown in
Figure 2 (a). The two classes are not linearly separa-
ble. The training of this paper starts with all 5 data
and applies a linear discriminant algorithm [6]. The
weight vector of the first hidden node is calculated as
w) = [0.707,0.707]%, Figure 2 (b). The first hidden
node projects all data onto the line L in the direction
of w;. The dot lines in Figure 2 (b) show the projec-
tion. The thresholds 6; and 6, are determined at the
bisectors between two nearby clusters for hyperplane
H, and H, respectively. The data (4,4) and (0,0) are
separated by the hyperplanes, then deleted from the
input space. Only the data left in Figure 2 (c) are
used to calculate the weight vector for the second
hidden node. The calculated w, = [0.707, —0.707]
and the projection are shown in Figure 2 (d). Then

Figure 2. (a) Input space and training data. (b) After training
the first node. (c) The data for training the second hidden
node. (d) After training the second nodes. (e) Partitioned

input space. (f) After Boolean minimization.

the thresholds 63 and 64 can be determined for Hj
and Hy. Figure 2 (e) shows all four hyerplanes which
separate the clusters in the input space.

The four hyperplanes can be reduced to three by
applying Boolean minimization in the training for the
output node. The three hyperplanes are shown in
Figure 2 (f), and an implementation will be given in
Figure 6 below.

Table 1. Comparing Three Training Methods

. FLOPS in Training | FLOPS in Training Forward
Agoritms | <001 | T <01 | Mo | Operations
Muktiplier: 6
g::mbn 137~138x10" | 209~635x16 | 241 )
) - Sigmoid: 3
vl)iom.mmm‘, —_ — 5+5+2] ?nm: 12 :
Hardlimiter: 12
2 2 Inverter: 3
Paper 7.54x10 754x10 | 241 |Sem20R:1
Hardlimiter: 3

We compared the result of this new training method
with backpropagation (BP) [1] and the training al-
gorithm in [7], which is based on Voronoi diagrams
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(VoD), in Table 1. For this example, the training
speed of the method in this paper is about 102 to
10% times faster than backpropagation (when back-
propagation converges). We do not have the infor-
mation to compare the speed with the VoD method,
but the synthesized network in this paper only uses
three nodes while the VoD method in [7] needs 12
nodes.

The network example of Figure 2 and 6 and the
above discussion of its design show how we separate
the design into two stages. In the first stage, de-
scribed in Section III, the weight vector for each node
and the threshold values for its hard-limiters are cho-
sen. In the second stage, described Section IV B, the
logic functions from the binary variables of hidden
nodes to the binary value of each output node are
specified.

III. THE DESIGN OF THE PORTION OF THE NET-
WORK FROM INPUT TO THE BINARY OUTPUTS OF
HIiDDEN NODES

A. The Structure from Input to Hidden Nodes

Figure 3 presents general structure of synthesized
networks. They have one hidden layer and one out-
put layer; two kinds of nodes, hidden nodes and out-
put nodes. The training for hidden node includes de-
termining the weight vector w, threshold 8, and the
nonlinearity f. The training for the output nodes is
to form a minimal logic function based on the hidden
node outputs. The output layer can be implemented
by logic functions Figure 3 (a) or perceptrons Figure
3 (b). Also each hidden node can have more than one
output nolinear functions. With sufficient numbers of
hidden nodes, any decision region in the input space
can be formed as the intersection of the half-spaces
partitioned by the hyperplanes associated with the
hidden nodes, and the region can be expressed as the
binary output word of the hidden nodes. With the
output nodes performing Boolean functions, the net-
works in Figure 4 (a) is capable for any classification
problem. The network in Figure 4 (b) also has the
capability of forming any decision region [10].

The hidden nodes are the basic elements of the
networks. For a hidden node, all data in the input
space will be projected to a line

L = Xw, (1)

where X € R" is a r X n matrix of training data in
which each row associates with one training pattern.
Each component of an input vector is treated arith-
metically as a real number, even if it originally was
binary number. The input data space is a row space.
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(a) ®)
Figure 3. The network structures.

The vector w = [wy, wa, ..., wp) is a weight vector.
The output of one hidden node is

y = f(L) = f(Xw), 2

where 8 is a threshold, and f is a nonlinearity. The
f could be a hard-limiter (3), signum, sigmoid, or
other nonlinearities.

ro={s 12w 3)

The hard-limiter (3) is chosen in the following dis-
cussion. Other nonlinearities can also be used in
this training algorithm. The sigmoid approaches the
hard-limiter. Its differentiable property made it pos-
sible to train multiple layer networks by the gradi-
ent descent methods. However, it is not necessary
for the networks designed in this paper because the
new training method is not based on gradient descent
methods.

B. Discriminant and the Choice of Weight Vectors

Suppose that we have two clusters each presents a
pattern class in the n-dimensional input space. To
determine the value of a weight vector w is equal to
find a direction for w, so that the variation between
the two clusters of projected data is as large as pos-
sible. The projection problem has been studied by
Fisher [5][6]. The solution of the problem is called
discriminant analysis.

For a two class classification problem, the criterion
function J in Fisher’s linear discriminant [6] can be
written as

WTSBW
Jmaz'(w) = m (4)
where
SB = (m1 - mg)(m1 - mg)‘ (5)
and

Sw = (Xy —m)(X; —m;)* +(Xz — m3)(X; —m,)*
(6)



The m; and m; are the means of the two classes of
data.

The (4) is the well known Generalized Rayleigh’s
Quotient problem. The weight vector w to maxi-
mizes J is the eigenvector associated with the biggest
eigenvalue in A by solving the following generalized
eigenvalue problem.

™

When Sw is nonsingular, above equation can be writ-
ten as a conventional eigenvalue problem.

SBW = ASW w

Sv-vl Spw = Aw

®

As pointed in [6], since Spw is always in the direc-
tion of m; — mgy, the weight vector w can be solved
directly as

(9)

In this paper, the equation (7) or (8) is used to
train each hidden node based on the given training
data. The method can be easily extended to multiple
class problems [6).

w = Sp' (m; — my).

C. Determining the Thresholds for the Hard Limiters

Once the weight vector w is determined, the cal-
culation of L = Xw projects all n-dimensional data
onto one dimension orthogonally. Thresholds then
need to be determined to separate the two classes of
data on the line L. The purpose is to have the data
in H* belongs to same class or most of them belongs
to same class depended on design specification. To
assist in analysis, we use the histograms in Figure 4
to present the distribution density of the projected
data on the line L.

Figure 4 (a) is a linearly separable case. A thresh-
old located in the center of the two data clusters can
totally separate the two classes.

In Figure 4 (b), the two classes overlap each other.
They can not be totally separated by one threshold.
This means more hidden nodes will be needed af-
ter training the current node. By the definition of
hard-limiter, only the data on the right of 8; can
exceed the threshold of the harder-limiter. To have
more separable data pass through the hard-limiter,
we change the direction of the vector w to —w as
shown in Figure 4 (c). Then a threshold can be set
on 6 for a no-error or less-error partition. The data
on the right of 8 will be deleted from the training set
and the data on the left of 6 will be used to train
next node.

If the training data in Figure 4 (¢) is large enough
to present a statistical distribution, and a fault-alarm
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Figure 4. Histograms of projected data distribution.

probability is given as one of the design specifica-
tions, a threshold may be set on ¢'. By doing so, the
network may have better generality on new data out-
side the training set and the total number of hidden
nodes will be reduced.

Figure 4 (d) is similar to the case of Figure 2 (b).
Two classes of data are in three clusters. With one
weight vector and two thresholds, the three clusters
can be totally separated.

We have discussed basic distributions of projected
data. Other cases can be treated as a combination of
these basic cases in determining a threshold. Beside
the above methods, there are many different crite-
ria and rules developed in binary tree classification
[12]. These criteria, such as entropy function, can be
adopted to determine the threshold of hidden node.

IV. SYNTHESIZING THE NETWORK

Now we present the new method step by step using
the example in Figure 2 as an illustration.

A. Synthesizing the Hidden Layer

Step 1 Calculate Sg (5) and Sw (6) based on the
current training data set.

Step 2 Solve the generalized eigenvalue problem
in (7). The eigenvector associated with the biggest
eigenvalue is the weight vector w for the current hid-
den node. The example in Figure 2 is a special case.
The two weight vectors can be solved together while
the w, is the eigenvector associated with the biggest
eigenvalue and the wy is the eigenvector associated
with the second eigenvalue. The eigenvalue function



is available in most mathematical software package
and fast algorithm is also available. When Sw is
nonsingular, the equation (8) or (9) can be consid-
ered.

Step 3 Run a forward calculation for the current
node L = Xw to project all training data onto the
line L.

Step 4 Apply the algorithm in Section III, C to
determine the threshold(s) and the location of the
hyperplane(s). ¢, and H, in Figure 2 (b) can be
determined directly. The direction of w; is changed
to —w; for the #; and H,.

Step 5 Delete the separated data from the input
space and go to Step 1 until all clusters are separated.
For the Figure 2 example, delete the (0,0) and (4,4)
and only use (4,0), (2,2), and (0,4), as shown in figure
2 (c) to train the second node. Finally, all clusters
are separated by hyperplanes, Figure 2 (¢). We now
can go to train the the output nodes.

B. Synthesizing the Output-Layer Logic Function and
Pruning Hidden Nodes

Once the clusters of training data are separated by
the hidden nodes. The training for the output nodes
is to form logic functions of hidden nodes for desired
outputs. Actually the training for output nodes is
same as designing a logic circuit by applying Boolean
Minimization.

Step 6 Prepare a truth table. Each row presents
one region; and each column presents one hidden
node output. Figure 5 (a) is a truth table associ-
ated to the separated regions in Figure 2 (e).

%Y,
00 01 11 10

BB A

Region [ V2| Je]yClasa] 4
I [1(ele[e] x | 00 | o |1 [AYY
o Je[ie]e] & |1
m [elel1]e] o |1 on |1 (s [[*]] *
v_|e[e[e[1] o |1
vV [e]e]e]e] x [ 11L‘ * el

(., 10 [ o[l )]

®)
Figure 5. Truth table (a) and Karnaugh map (b)

for the example in Figure 2.

Step 7 Use Karnaugh map or CAD software in
logic circuit design to minimize the logic function.
Prune the hidden nodes or hard-limiters which are
not used in the minimized logic function. Figure 5
(b) is the Karnaugh map from the truth table in Fig-
ure 5 (a), where “ *” denotes don’t care. A mini-
mized output function for the example in Figure 2 is
d = y2 + ya + y4. The hyperplane H; in Figure 2 (e)
and the associated hard-limiter are pruned by the
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minimization. Figure 2 (f) is the final partationed
input space.

Step 8 Implement the synthesized neural network.
Figure 6 shows the final design for the example in
Figure 2. The values of weight vector are scaled to
1.0 and -1.0 to simplify the implementation without
changing the directions of the vector w; and ws.

d

Figure 6. A minimal implementation for the example in Figure
2.

V. SYNTHESIS EXAMPLE
Ezample 1. No Linearly-Separable Problem As shown

in Figure 7, this example is to classify two classes of
data which are not linearly separable. We tried to
apply backpropagation [1] and the method in [3] to
solve the problem with the same training data. Even
though we repeated the training for several times
with different initial weights, the backpropagation al-
ways converged to a local minimum. The method in
(3] converges faster in the beginning, but it converged
to a local minimum as well.

By applying the method in this paper, the prob-
lem was solved in the first run, and the method only
needed three hidden nodes to totally classify the two
classes of data. The first hyperplane H, was deter-
mined with all data in the input space. Then only the
data in the half-plan H; was used to train the second
hidden node for the hyperplane H;. Finally only the
data within the intersection of H; and H; was used
to train the third hidden nodes. Thus the data set
was reduced to a linear-separable case and the third
hyperplane Hj totally separated it. The Karnaugh
map to minimize the output layer is shown in Figure
8(a). The minimized function of the output node is
dout = Ly + L1L3. One implementation is shown in
Figure 8(b).

VI. CONCLUSION

We have proposed a new method for neural network
design and synthesis. The method can be used widely
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Figure 8 (a) Karnaugh map, (b) An implementation.

in classification and pattern recognition. The net-
work structure is designed based on the principle that
hidden nodes present hyperplanes to partition the in-
put space and separate the data clusters into decision
regions, and the output nodes are to form Boolean
functions for the partitioned regions.

To deal with data which is not linearly separa-
ble, a partition-deletion method was developed based
on the traditional Fisher’s linear discriminant. Hid-
den nodes were added to the network as needed, and
training data set was reduced while the training is in
progress. The partition-deletion method significantly
accelerates the training precess. Finally, the Boolean
minimization was applied to train the output nodes.
This not only can implement the output nodes with
minimal connections but also can prune the hidden
nodes. Therefore, the new method can synthesize
a neural network with guaranteed convergence, fast
speed, and a minimal network structure.

Using the example in Figure 2, we showed that the
new algorithm is about 10% — 10 times faster than
backpropagation while the new method still provides
higher accuracy and simpler network structure. For
other examples which we have tested, we can not
compare the speed with the backpropagation because

the backpropagation either never converged or con-
verged to an incorrect local minimum.

Limited by space, we only presented the examples
of 2-class classification and the data is in 2 dimen-
sional input space. However, it is straight forward to
apply the new method in multiple classes and multi-
ple dimensions. Due to the nature of the algorithm,
the training can be done on new coming data and the
hidden nodes can be added to the network dynami-
cally while the the network is in use.

We choose biased hard-limiter as the nonlinearity
of hidden nodes in the examples for a simple im-
plementation. However, other nonlinearities such as
box, square, and sigmoid functions can also be used
in the network synthesis. This offers a flexibility to
network designers. They can choose a suitable non-
linearity based on the design specifications and the
implementation.
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