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ABSTRACT II. NORMALIZED SP ECTRAL SUBBAND

MOMENTS
Spectral subband centroid, which is essantially the first -order

normalized moment, has been proposed for speech recognition Considers(t,n), n=0, 1, ---, N-1, as a frame ofN speech signal
and its robustness to additive noise has been demonstrated beforesamples at fram its shorttime power spectrum estimate is
In this paper, we extend this concept to the use of normalized

N-1 . 2
spectral subband moments (NSSM) for robust speech P(t,w) =|)_s(t,n)e’" (1)
recognition. We show that normalized moments, if properly n=0
selected, yield comparable recognition performance as the If we divide the frequency axis into several subbands, then for the
cepstral coefficients in clean speech, while deliver a better i-th subband, its moment of ordpiis
performance than the cepstra in noisy environments. We also oy [T
propose a procedure to construct the dynamic moments that MP(t.i) = ,[0 w'w (@)P(tw)dw, @

essentially embodies the transitional spectral information. We  where w, () is the frequency response of théh bandpass filter.
discuss some properties of the proposed dynamic features. The NSISM of ordep is then given by

M ®(t,i)

I. INTRODUCTION NM P (t,i) = . 3
(t.i) YE® (3)
Cepstral coefficients derived from either linear prediction (LP) In this paper, we explore the potential of the NSSM for robust
analyss or a filter bank are used almost as “standard” frorehd speech recognition in noise. Figure 1 shows a block diagram for

features in current automatic speech recognition (ASR) systems. extracting NSSM features. Firstly, the powsrectrum of a given
Despite this defacto standard, cepstral features are found sensitivdrame of speech signal is estimated through the fast Fourier
to additive noise. To improve the robustness of framd featues transform (FFT). The full band power spectrum is then divided
with respect to background noise and other distortions, there has into a total of | subbands by applying a filter bank. Finally, the
been tremendous effort made in searching for alternative features NSSM for each subband is calculated.

[1][2] [3] [4] [5]- Observing that the higher amplitude portions w; (w)

(such as formant) of spectrum are less affected by smiPaliwal 5

proposed spectral subband centroids (SSC) as features [5]. He M "Q
tested this feature in an English eset alphabet recognition task ‘

and demonstrated that centroid features are more robust in noise, S(tﬂ

yet worse in clean speech than the LP cepstral coe fficients W, (w)

(LPCCs). This idea was extended in [6] where a speech signal is # Y p(t D

represented in SSC histograiinased cepstral coefficients. These MI
new cepstral features were shown to have great potential for MF(I D

robust speech recognition. The SSCs were also experimdride Figure 1. Block diagram for computing the NSSM
supplementary features to the cepstral coefficients for speech

recognition in [7] [8].

Preprocessing
[FFTOf

In this study, we try to answer the following basic questions: (1)
what should be a good choice of the order of the moments? (2)
In this paper, we generalize Paliwal’s®torder spectral moment  how should the full band be divided into subbands? (3) what

idea to higher -order normalized spectral subband moments shauld be the frequency response of each bandpass fil€z) ?
(NSSM) and investigate their effectsonr  ecognition. Our (4) how many subbands should be used?

contributions are as follows: Firstly, we show that the properly ) ) )
selected NSSM can yield comparable performance in clean It can easily be seen from (2) that the transformation which

speech compared to the widely used MFCCs, while itis more ~ COnVverts the power spectrum into moments has a high -pass
resilient to noise. Secondly, we propose a procedure to cang filtering characteistics. In fact, the frequency response of this

the dynamic moment vector that essentially embodies the high-pass filteris  H(«w) =@"*. For speech signal with a
transitional spectral information. Finally, we show the bandwidth of 4 kHz, in Fig. 2 we plot the frequency responses for
effectiveness of the combination of static and dynamic NSSMs  differentp values. We conclude from Fig. 2 th@tcan not be set

for speech recognition in both clean and noisy environments. too large as it would severely suppress the low frequency part in

which the first and second formants locate.
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Figure 2. Highpass filtering character vg.

However, the high -pass filtering should not be viewed as
negatives. If pis prop erly selected, it may be useful for
suppressing lowpass noise like in a car environment. For
example, if p=2, knowingthat F[g'(t)]= jaG(jw), where
FIl and'indicate the Fourier transbrm and the differentiation
operation, respectively, and(jw) , the Fourier transform of the
g(t) . The term «’P(t,w) in (2) is then the power spectrum of
the speech signal through a differentiator. If we use 1-az™
(a - 1) in discretetime domain to approximate the continuous
differentiation, it is then readily to see that the &’P(t, ) is the
continuous version of the power spectrum of pre-emphasized
speech ggnal. The pre-emphasis filtering is almost used as a

dynamic SSC features through a continuouslomain variation.
The dynamic NSSM features can be computed in the same
fashion. In brief, the NSSM variation is represented by the
differentiation of NM (t,i) with respect to timé From (3), we can

derive

BN'\gt(t’i) = ! 5 DO w; (w) apgt, ) de”w, (W)P(t, w)dw—
[ w@Ptada)
n n Pt,w) , ] .
L mw,(a))P(t,a))da)J'O W, (@) ot dw‘J 4)

Since the P(t,w) usually doesnot have an analytic form, we

OP(t, @)
E

approximate the—t by a finite order difference:

oP(t,w)

P (®)

o
=AP(t,w) = Y a Pt +k,a),
k=-0
where O and O' are the orders of the difference, and, 's are

real coefficients. Substituting (5) to the right hand side of (4), we
can readily derive

WZANM(t,i)zikaM(t+k,i)' ()
where
{ MO(e+kii) for k#0
_h MOy ’
b= o ok ' v
(> 2Ty o k=0

“standard process” in the feature representation. In this paper, we

choose p=2 (Speech recognition experiments confirm that
p=2 issuperiorto p=1and p=3. For the sake of space, we

will not elaborate this issue. ), and the preemphasis filtering is
eliminated in the prgprocessing stage.

For the second question, we have studied the issue by dividing
the subband in linear, Meand Bark scales. It turns out all three
scales yield quite similar performance. We therefore adopt the
linear scale, since this no interpolation of the FFT power
spectrum is needed. For the third problem, our early work
compared several window functions  such as rectangular,
triangular and Gaussian filters. It was found that the rectangular
filter yield more consistent performance in various conditions
[12].

We have addressed the first three questions. The last ggion
will be discussed in Section IV.

1. DYNAMIC NSSM

It has been widely observed that the temporal processing of shor

term speech parameters can lead significant gain to speech
recognition. According to Furui’'s work [9], a simple yet effective
method to determine the dynamic (delta) cepstieatures in the
vicinity of a given feature vector is popularly used in the existing

systems. The same procedure unfortunately fails when applied to

compute the dynamic SSC features. The reason is that the
trajectory of the SSC is rather flat [5], the diference among the
SSCs of neighboring frames approximates to zero, and thus
carries little information. We suggested in [10] to estimate the

Although Equation (6) looks like the formula used to calculate
the dynamic cepstral features, the coefficients in (6), i.e., the

b, ’s, vary accordingto M°(t+k,i) and M°(t,i), which are

essentially thé-th subband energy at the + k)™ and t" frame,

whereas the coefficients in the difference equation to compute the
dynamic cepstral features are often constants.

To compute dynamic NSSM according (6) and (7), we need to
know the b, 's. Unfortunately, a close form of, would be very

difficult to find. Through speech recognition experiment, we
found in [10] that several sets of b, 's can yield promising

performance. In this paper, we adopt oaeaf them which is
MO(t+2,i)
b, =|< MOt+2,i)+M°(t-2,i)’
Lo

If secondorder dynamic coefficients are to be used, they can also
+ be estimated using (6) by taking largér and O' . In this paper,
we estimate the sead-order dynamic features through:

for k=2,

(8)

else

AANM (t,)) =b,NM(t +4,i) —b_,NM(t-4,i),  (9)
where
{b: M P (t+4,i)
{1 MM (4D (10)
-MP(t-4,)

‘Lb"‘ TMP+40) + M P (-4



IV. EXPERIMENTS
1. Databases

Three databases were used in this paper. They are TI46,
NOISEX, and the Spanish Aurora SpePeltCar database.

The TI46 is a multi-speakerjsolatedword databasewhich was
designed and collected by Texas Instruments (TI). The database
contains 16 speakers8 males and 8 females. The vocabulary
consists of 10 isolated digits from ‘zero’ to ‘nine’, 26 isolated
English alphabets from ‘a to ‘Z, and ten isolated words
including ‘enter’, ‘erase, ‘go’, ‘help’, ‘no’, ‘rubout’, ‘repeat,
‘stop’, ‘start’, and ‘yes’. There are 26 utterances of each word
from each speaker: 10 of them are designated amtng and the
rest 16 are designated as testing tok&peectsignalis digitized

at a sampling rate of 12.5 kHz

The NOISEX database contains various noise samples [11]. The
original sampling frequency in this database is 16 kHz. We
downsampled the nois® 12.5 kHz to match the bandwidth of
speech signal in the T146.

The Spanish Aurora SpeechBaar database is digit string subset
of the SpeechDaCar database [12]. It contains 4914 recordings
and more than 160 speakers. The sampling rate is 8 kHz.iffgain
and test sets are defined as for the ETSI aurora evaluations [13].

2. Recognition performance VS. number of subbands

The first experiment uses the T146 database to perform alphabet
recognition. Only the speech from 8 male speaker was used. The
goal of this experiment is to answer the last question we raised in
Section I, namely, “how does the number of subbands affect the
speech recognition performance?”

The recognition system used is an HMM-based multispeaker
isolated speech recognizer. The modelsedeft-to-right with no
skip state transition. Eight states are used for each model. A
mixture of 4 multivariate Gaussian distributions with diagonal
covariance matrices is used for each state to approximate its
probabilitydensity function. Speech is analyzed every 10 ms
with a frame width of 32 ms, and Hamming window is applied.
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Figure 3. Recognition performance vs. number of subbands

(no dynamic feature are used)

The result is presented in Fig. 3. For comparison, we alsatipéot
recognition result using 12 MFCCs which are derived from a
filter bank consisting of 24 meacaled triangular filters.

We see that the trend of the word error rate associated with the
number of subbands is a sadditke curve. In another word, as
the number of subbands increases, the error rate decreases first
and then increases. The lowest error rate is obtained using 16
bands, which is slightly better than the MFCC features. It is
interesting to note that that in a rather wide range, say from 10 to
20bands, the NSSM features yield results which are comparable
to that the MFCCs.

3. Robustness of the NSSMs

Section 1l addressed how to compute the fiestd secondorder
dynamic NSSM features.In this experiemnt, we compare the
NSSM features with the MFCCs after combining the dynamic
features. The same recognition system as in the previous
experiment is used, and the database is also T146. To control the
SNR, we take some noise samples from the NOISEX database,
downsample to 12.5 kHz, and then add te #peech signal. Both
NSSM and MFCC vector contains 12 static, 12 first- and 12
secondorder dynamic features. We experimented several types of
noise. Some representative results are plotted in Fig. 4.
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Figure 4. Performance of the MFCC and NSSM features in noise
conditions

From Figures 3 and 4, one can see that the dynamic NSSM
feature is effective in reducing the wd error rate. From Fig. 4,
we observe that in clean condition, the NSSM together with the
frirst- and secondorder NSSM yields similar word error rate as
the MFCC plus delta and delta -delta MFCC. In noisy



environments, however, NSSM performs better thdrQ@. This NSSM could produce comparable performance in clean speech
show the advatages of the NSSM features in noisy environments. conditions as compared to the MFCCs provided that the number
of subbands is properly selected. The NSSMuess were shown
more resilient to noise than the MFCCs. We suggest a procedure

In this experiment, we compare NSSM with MFCC and LPCC in  to derive the dynamic NSSM features. Experimental results

3. Recognition Experiment on Spanish AuroraSDC database

Aurora speaker independent, continuous digit recognition showed that the NSSM together with the proposed dynamic
evaluationtask. The recognizer used is a Bell Labs baseline NSSM features could yield comparable performance as the
recognition system. Here we use the contextependent model, MFCCsplus its dynamic coefficients in clean speech condition.
Speciﬁca”y the headbody_ta” (HBT) model. The HBT model Moreover they demonstrate a hlgher robustness with respect to

assumes that the context dependent digit models can be built by Vvarious types and levels of noise. The NSSM feature were
concatenating a leftontext dependent unit (head) with a context compared with the MFCC and the LPCC using the Spanish
independent unit (body) followed by a rightcontext dependent ~ AuroraSDC database. Ther  esult further confirmed the
unit (tail). In other words, each digit consists of 1 body, 12 heads, robustness of the NSSM freends.

and 12 tails (representing all left/right contexts), for a total of 276
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In this paper, we have invesgated normalized spectral subband
moments for speech recognition. We demonstrated that the



