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ABSTRACT 

Spectral subband centroid, which is essentially the first -order 
normalized moment, has been proposed for speech recognition 
and its robustness to additive noise has been demonstrated before. 
In this paper, we extend this concept to the use of normalized 
spectral subband moments (NSSM) for robust  speech 
recognition. We show that normalized moments, if properly 
selected, yield comparable recognition performance as the 
cepstral coefficients in clean speech, while deliver a better 
performance than the cepstra in noisy environments. We also 
propose a procedure to construct the dynamic moments that 
essentially embodies the transitional spectral information. We 
discuss some properties of the proposed dynamic features. 

I. INTRODUCTION  

Cepstral coefficients derived from either linear prediction (LP) 
analysis or a filter bank are used almost as “standard” frond-end 
features in current automatic speech recognition (ASR) systems. 
Despite this defacto standard, cepstral features are found sensitive 
to additive noise. To improve the robustness of front-end features 
with respect to background noise and other distortions, there has 
been tremendous effort made in searching for alternative features 
[1] [2] [3] [4] [5]. Observing that the higher amplitude portions 
(such as formant) of spectrum are less affected by noise, Paliwal 
proposed spectral subband centroids (SSC) as features [5]. He 
tested this feature in an English e-set alphabet recognition task 
and demonstrated that centroid features are more robust in noise, 
yet worse in clean speech than the LP cepstral coe fficients 
(LPCCs). This idea was extended in [6] where a speech signal is 
represented in SSC histogram-based cepstral coefficients. These 
new cepstral features were shown to have great potential for 
robust speech recognition. The SSCs were also experimented as 
supplementary features to the cepstral coefficients for speech 
recognition in [7] [8]. 

 In this paper, we generalize Paliwal’s 1st-order spectral moment 
idea to higher -order normalized spectral subband moments 
(NSSM) and investigate their effects on r ecognition. Our 
contributions are as follows: Firstly, we show that the properly 
selected NSSM can yield comparable performance in clean 
speech compared to the widely used MFCCs, while it is more 
resilient to noise. Secondly, we propose a procedure to compute 
the dynamic moment vector that essentially embodies the 
transitional spectral information. Finally, we show the 
effectiveness of the combination of static and dynamic NSSMs 
for speech recognition in both clean and noisy environments. 

II.  NORMALIZED SP ECTRAL SUBBAND 
MOMENTS  

Consider ),,( nts  n = 0, 1, � , N-1, as a frame of N speech signal 

samples at frame t, its short-time power spectrum estimate is  
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If we divide the frequency axis into several subbands, then for the 
i-th subband, its moment of order p is �
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where )(ωiw is the frequency response of the i-th bandpass filter. 

The NSSM of order p is then given by 
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In this paper, we explore the potential of the NSSM for robust 
speech recognition in noise. Figure 1 shows a block diagram for 
extracting NSSM features. Firstly, the power spectrum of a given 
frame of speech signal is estimated through the fast Fourier 
transform (FFT). The full band power spectrum is then divided 
into a total of I subbands by applying a filter bank. Finally, the 
NSSM for each subband is calculated. 
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Figure 1. Block diagram for computing the NSSM 

In this study, we try to answer the following basic questions: (1) 
what should be a good choice of the order of the moments? (2) 
how should the full band be divided into subbands? (3) what 
should be the frequency response of each bandpass filter,)(ωiw ?  

(4) how many subbands should be used?  

It can easily be seen from (2) that the transformation which 
converts the power spectrum into moments has a high -pass 
filtering characteristics. In fact, the frequency response of this 
high-pass filter is 2/)( pH ωω = .  For speech signal with a 

bandwidth of 4 kHz, in Fig. 2 we plot the frequency responses for 
different p values. We conclude from Fig. 2 that p can not be set 
too large as it would severely suppress the low frequency part in 
which the first and second formants locate. 
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Figure 2. High-pass filtering character vs. p 

However, the high -pass filtering should not be viewed as 
negatives. If p is prop erly selected, it may be useful for 
suppressing low-pass noise like in a car environment. For 
example, if 2=p , knowing that =)]('[ tgF  )( ωω jGj , where 

[]F  and ' indicate the Fourier transform and the differentiation 
operation, respectively, and )( ωjG , the Fourier transform of the 

)(tg . The term ),(2 ωω tP  in (2) is then the power spectrum of 

the speech signal through a differentiator. If we use 11 −− Zα  
( 1→α ) in discrete-time domain to approximate the continuous 

differentiation, it is then readily to see that the ),(2 ωω tP is the 

continuous version of the power spectrum of pre-emphasized 
speech signal. The pre-emphasis filtering is almost used as a 
“standard process” in the feature representation. In this paper, we 
choose 2=p  (Speech recognition experiments confirm that 

2=p  is superior to 1=p  and 3=p . For the sake of space, we 

will not elaborate this issue. ), and the pre-emphasis filtering is 
eliminated in the pre-processing stage. 

For the second question, we have studied the issue by dividing 
the subband in linear, Mel and Bark scales. It turns out all three 
scales yield quite similar performance. We therefore adopt the 
linear scale, since this no interpolation of the FFT power 
spectrum is needed. For the third problem, our early work 
compared several window functions such as rectangular, 
triangular and Gaussian filters. It was found that the rectangular 
filter yield more consistent performance in various conditions 
[12].  

We have addressed the first three questions. The last question 
will be discussed in Section IV. 

I II. DYNAMIC NSSM  

It has been widely observed that the temporal processing of short-
term speech parameters can lead significant gain to speech 
recognition. According to Furui’s work [9], a simple yet effective 
method to determine the dynamic (delta) cepstral features in the 
vicinity of a given feature vector is popularly used in the existing 
systems. The same procedure unfortunately fails when applied to 
compute the dynamic SSC features. The reason is that the 
trajectory of the SSC is rather flat [5], the difference among the 
SSCs of neighboring frames approximates to zero, and thus 
carries little information. We suggested in [10] to estimate the 

dynamic SSC features through a continuous-domain variation. 
The dynamic NSSM features can be computed in the same 
fashion. In brief, the NSSM variation is represented by the 
differentiation of ),( itNM  with respect to time t. From (3), we can 

derive 
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Since the ),( ωtP  usually does not have an analytic form, we 

approximate the 
t

tP

∂
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 by a finite order difference: 
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where O  and 'O are the orders of the difference, and ka ’s are 

real coefficients. Substituting (5) to the right hand side of (4), we 
can readily derive �
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where  
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Although Equation (6) looks like the formula used to calculate 
the dynamic cepstral features, the coefficients in (6), i.e., the 

kb ’s, vary according to ),(0 iktM +  and ),(0 itM , which are 

essentially the i-th subband energy at the thkt )( +  and tht  frame, 

whereas the coefficients in the difference equation to compute the 
dynamic cepstral features are often constants.   

To compute dynamic NSSM according (6) and (7), we need to 
know the kb ’ s. Unfortunately, a close form of kb  would be very 

difficult to find. Through speech recognition experiment, we 
found in [10] that several sets of kb ’s can yield promising 

performance. In this paper, we adopt one set of them which is 
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If second-order dynamic coefficients are to be used, they can also 
be estimated using (6) by taking larger O  and 'O . In this paper, 
we estimate the second-order dynamic features through: 
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IV. EXPERIMENTS  

1. Databases 

Three databases were used in this paper. They are TI46, 
NOISEX, and the Spanish Aurora SpeechDat-Car database. 

The TI46 is a multi -speaker, isolated word database, which was 
designed and collected by Texas Instruments (TI). The database 
contains 16 speakers, 8 males and 8 females. The vocabulary 
consists of 10 isolated digits from ‘zero’ to ‘nine’, 26 isolated 
English alphabets from ‘a’  to ‘z’ , and ten isolated words , 
including ‘enter’, ‘erase’, ‘go’ , ‘help’, ‘no’ , ‘rubout’, ‘repeat’, 
‘stop’, ‘start’, and ‘yes’. There are 26 utterances of each word 
from each speaker: 10 of them are designated as training and the 
rest 16 are designated as testing tokens. Speech signal is digitized 
at a sampling rate of 12.5 kHz 

The NOISEX database contains various noise samples [11]. The 
original sampling frequency in this database is 16 kHz. We 
downsampled the noise to 12.5 kHz to match the bandwidth of 
speech signal in the TI46. 

The Spanish Aurora SpeechDat-Car database is digit string subset 
of the SpeechDat-Car database [12]. It contains 4914 recordings 
and more than 160 speakers. The sampling rate is 8 kHz. Training 
and test sets are defined as for the ETSI aurora evaluations [13]. 

2. Recognition performance VS. number of subbands 

The first experiment uses the TI46 database to perform alphabet 
recognition. Only the speech from 8 male speaker was used. The 
goal of this experiment is to answer the last question we raised in 
Section II, namely, “how does the number of subbands affect the 
speech recognition performance?”  

The recognition system used is an HMM-based multi-speaker 
isolated speech recognizer. The models are left-to-right with no 
skip state transition. Eight states are used for each model. A 
mixture of 4  multivariate Gaussian distributions with diagonal 
covariance matrices is used for each state to approximate its 
probability density function.  Speech is analyzed every 10 ms 
with a frame width of 32 ms, and Hamming window is applied.  
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Figure 3. Recognition performance vs. number of subbands 

(no dynamic feature are used) 

The result is presented in Fig. 3. For comparison, we also plot the 
recognition result using 12 MFCCs which are derived from a 
filter bank consisting of 24 mel-scaled triangular filters. 

We see that the trend of the word error rate associated with the 
number of subbands is a saddle-like curve. In another word, as 
the number of subbands increases, the error rate decreases first 
and then increases. The lowest error rate is obtained using 16 
bands, which is slightly better than the MFCC features. It is 
interesting to note that that in a rather wide range, say from 10 to 
20 bands, the NSSM features yield results which are comparable 
to that the MFCCs. 

3. Robustness of the NSSMs  

Section III addressed how to compute the first- and second- order 
dynamic NSSM features. In this experiemnt, we compare the 
NSSM features with the MFCCs after combining the dynamic 
features. The same recognition system as in the previous 
experiment is used, and the database is also TI46. To control the 
SNR, we take some noise samples from the NOISEX database, 
downsample to 12.5 kHz, and then add to the speech signal. Both 
NSSM and MFCC vector contains 12 static, 12 first - and 12 
second-order dynamic features. We experimented several types of 
noise. Some representative results are plotted in Fig. 4.  
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(a) Performance in the Lynx noise conditions 
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(b) Performance in the speech noise conditions 

Figure 4. Performance of the MFCC and NSSM features in noise 
conditions 

From Figures 3 and 4, one can see that the dynamic NSSM 
feature is effective in reducing the word error rate. From Fig. 4, 
we observe that in clean condition, the NSSM together with the 
frirst- and second-order NSSM yields similar word error rate as 
the MFCC plus delta and delta -delta MFCC. In noisy 



environments, however, NSSM performs better than MFCC. This 
show the advatages of the NSSM features in noisy environments. 

3. Recognition Experiment on Spanish Aurora-SDC database 

In this experiment, we compare NSSM with MFCC and LPCC in 
Aurora speaker independent, continuous digit recognition 
evaluation task. The recognizer used is a Bell Labs baseline 
recognition system.  Here we use the context-dependent model, 
specifically the head-body-tail (HBT) model. The HBT model 
assumes that the context dependent digit models can be built by 
concatenating a left-context dependent unit (head) with a context 
independent unit (body) followed by a right-context dependent 
unit (tail). In other words, each digit consists of 1 body, 12 heads, 
and 12 tails (representing all left/right contexts), for a total of 276 
units (11(digits) x (1(body)+12 (head) + 12 (tail) + 1 (silence)). 
We use a 3-state HMM to represent each head and tail and a 4-
state HMM for each body. Overall, it corresponds to a 10-state 
digit model for a total number of 837 states (including a 1-state 
silence model). 

Speech signal is analyzed every 10 ms with a of 30 ms length 
window. Each frame is represented by 13 coefficients, 1 energy 
and 12 static features. For NSSM, we use 12 rectangular band-
pass filters with 50% overlap, distributed along a linear scale. For 
MFCC, 12 coefficients are computed by applying the DCT to 24 
logarithm mel-scaled filter bank energies. The first coefficient, 
namely the 

0C  is neglected. The 12 LPCCs are derived from the 

autocorrelation method. After computin g the 13 static 
coefficients, 13 first-order and 13 second-order dynamic features 
are estimated accordingly. In total, the front-end feature is 39-
dimension vector. The recognition result is shown in Table 1. 

Spanish Aurora SpeechDat-Car 

Word Accuracy (%)  

MFCC LPCC NSSM 

WM 96.0 94.5 94.1 

MM 89.2 89.0 89.0 

HM 81.0 80.9 82.7 

Average 88.7 88.1 88.6 

Table 1. Recognition performance using different front-ends. 

It can be seen that in well-matched condition, the MFCC yields 
the best performance, higher than both the LPCC and the NSSM. 
This is inconsistent with what we have observed in the previous 
isolated word recognition experiment where the NSSM and 
MFCC yield similar result in clean condition. The reason is under 
investigation.  

In the medium-matched condition, we see that the three sets of 
features produce the similar results. In highly -mismatch 
condition, the NSSM gives the best performance, which 
demonstrate the robust nature of the NSSM feature in noise. 

IV. CONCLUSION  

In this paper, we have investigated normalized spectral subband 
moments for speech recognition. We demonstrated that the 

NSSM could produce comparable performance in clean speech 
conditions as compared to the MFCCs provided that the number 
of subbands is properly selected. The NSSM features were shown 
more resilient to noise than the MFCCs. We suggest a procedure 
to derive the dynamic NSSM features. Experimental results 
showed that the NSSM together with the proposed dynamic 
NSSM features could yield comparable performance as the 
MFCCs plus its dynamic coefficients in clean speech condition. 
Moreover they demonstrate a higher robustness with respect to 
various types and levels of noise. The NSSM feature were 
compared with the MFCC and the LPCC using the Spanish 
Aurora-SDC database. The r esult further confirmed the 
robustness of the NSSM front-ends. 
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