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ABSTRACT

In this paper we study various front-end features, mod-
eling and adaptation agorithms on the Aurora 3 databases,
including auditory, moment, and AM-FM modulation fea-
tures, context-dependent digit models, segmental K-means
training, discriminative training, and model adaptations.
The evaluation results on Aurora 3 are presented with a
brief summary of our Aurora 2 results.

1. INTRODUCTION

The Aurora evaluation is for researchers to test their algo-
rithms on noise robustness and compare results measured
on the same databases. So far, there are two tasks on the
Aurora evaluation, Aurora 2 and 3, both are for connected
digit recognition. While the Aurora 2 databases use the
controlled experiments by adding noise digitally to clean
English digit strings [1], the Aurora 3 databases are col-
lected in a real-world car environment in 4 languages. In
this paper, we report our evaluation results on two of the
languages, Spanish and German.

2. BELL LABSAPPROACHES

In this section, we present our baseline system then describe
the different feature sets that have been used for this eval-
uation. Alternative training strategies and acoustic model
adaptation techniques are also reviewed.

A. Context-Dependent Model: Similar to last year ap-
proach [1], we have decided to use context-dependent (CD)
digit models, together with Bell Labs recognition engine as
backend. This contrasts with the official Aurora backend
that is based on whole-word digit models and the HTK en-
gine. The official backend setup typically leads to poorer
results, especialy in larger databases, and we believe that a
better baseline is beneficial to properly study the effect of
different front-ends on the final recognition performance.

Last year, we investigated several approaches to build
CD digit models. Given the limited amount of training
data, especialy in the Aurora3 databases, it is required to
rely on some tying techniques to build CD digit models.
The Head-Body-Tail digit model structure (HBT) assumes
that CD digit models are built by concatenating a left-
context-dependent unit (head) with a context-independent
unit (body) followed by aright-context-dependent unit (tail).
For example, assuming that the lexicon contains 10 digits
plus a silence model, each digit model consists of a set of 1
body, 11 heads and 11 tails (representing all left/right con-
texts) [2]. We typically model each head and tail with a
3-state HMM, while a 4-state HMM is used for each body.
Most of the experiments done this year have been based on
the HBT structure. CD digit models can also be built as tri-
phone modelsusing adecision tree. Thisisthe approach we
introduced last year [1], and some of this year experiments
have been carried out using this model topology.

B. Auditory Feature: The new auditory front-end in
our recognition system was developed to mimic the robust
human hearing in adverse acoustic environments [3, 4]. In
the front-end, efficient signal processing functionswereim-
plemented to satisfy both real-time and computation cost
requirements. Based on the analysis of the outer and mid-
dle ear, atransfer function was constructed to replace the
commonly used preemphasis filter, and then a new set of
digital auditory filters, which ssimulate auditory filtering in
the cochlea, replaces those used in the MFCC and PLP.
The auditory feature extraction procedure consists of: an
outer-middle-ear transfer function, FFT, frequency conver-
sion from linear to the Bark scale, auditory filtering, non-
linearity, and discrete cosinetransform (DCT). In our previ-
ous study[3], the feature has been evaluated in two tasks:
connected-digit and large vocabulary, continuous speech
recognition under various noise conditions, using both hand-
set and hands-free datain landline and wirelesstransmission
with additive car and babble noise. Compared with the
LPCC, MFCC, MEL-LPCC, and PLP features, the audi-
tory feature achieved significant performance improvement



in the connected-digit and the Wall Street Journal taskg[3].
The major improvement is due to the new auditory filters.

C. Normalized Moment Feature: Spectral subband
centroid (SSC) feature wasfirst proposed for speech recog-
nition [5] and then extended by incorporating the dynamic
SSC [6]. Inspired by the concept of SSC, a more gener-
alized, normalized subband spectral moments (NSSM) was
proposed for noisy speech recognition [7]. In brief, we di-
vide the full band into total of I subbands, the NSSM of
order p for the i-th subband is defined by

pry o MP(t9) Jo wPwi(w)P(t,w)dw
NMP(t,4) = MO(t,3) [T wPP(t,w)dw (1)

where MP(t, 7) indicates the i-th subband moment of order
p a time ¢, w;(w) is the frequency response of the i-th
bandpass filter, and P(#,w) the short-term power spectrum
of the speech signal at frame ¢. In this paper, the NSSMs
of order 2 are applied to the Aurora 3 task with a HBT
model structure. Each frame is represented in the energy
and 12 NSSM fesatures estimated from unsmoothed FFT
power spectrum using 12 rectangular band-pass filters with
50% overlap, distributed along a linear scale[7].

D. AM-FM Modulation Feature: There exists some
evidence that leads us to analyze speech signals in their
amplitude and frequency modulation(AM-FM) components
which vary continuously. We estimate these variationsusing
the Teager-Kaiser energy-tracking operator [9] energy sep-
aration algorithm (ESA). This algorithm demodulates nar-
rowband AM-FM signals by tracking the physical energy
implicit in the source and separating it into amplitude and
frequency components. For implementation purpose, we
first convert discrete samplesinto corresponding continuous
signals by using smoothing splines [8] before we apply the
continuous-time ESA. In speech recognition experimentswe
create a hybrid feature vector by augmenting the standard
auditory feature vector with the FM-AM information.

Theextraction of modulation featuresisasfollows: (i) A
filterbank of six, 50% overlapped Gabor bandpass filters
with center frequencies near the averaged formant frequen-
cies, isused. (ii) The output from each Gabor bandpass
filter is demodulated via the Spline-ESA into instantaneous
amplitude, a(t), and frequency, f(t), components. (iii) The
lowpassed a(t) and f(¢) are ssgmented into 30 ms frames,
updated every 10 ms. (iv) For each analysisframe and each
band, the weighted mean F, and standard deviation B,, of
the instantaneous frequency signal are estimated:

p, = IS0
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where T is frame length. (v) The FM percentage in each
band, K; = B,/ F, iscomputed.

E. Channel-Dependent (ChD) Model: In Aurora 3,
the well-matched (WM) training scenario pools together
heterogeneous data, close-talking and hands-free micro-
phone recordings, based on a multi-style training paradigm.
Since the well matched scenario is based on two very dis-
tinct environments, close-talking and hands-free. We build
condition-dependent models by adapting a condition inde-
pendent model. The condition independent model is built
on the official WM training set. This model can then be
adapted to both the hands-free and close-talking data by
using SMAP[13].

Since we now have 2 models available for recognition,
we need to decide which one should be used for each test
utterance. This can be simply done by running recognition
in paralel using the hands-free and close-talking models,
and select the recognition hypothesiswith the highest score.
Using MFCC feature and HBT digit models, the baseline
word error rate (WER) on the Spanish data is 4.0% on the
WM test set. When using an oracle to select which model
should be used for each test utterance, we obtain 0.6% WER
on the close-talking data, and 6.5% WER on the hands-free
data, for an average of 3.5% WER. By selecting the model
based on the highest recognition score, the average WER on
WM is3.5%, similar tothe oracleresult. Thisillustratesthe
heterogeneity of the data, and indicates that the channel can
be identified with high accuracy on this database.

F. MCE/GPD Training: Minimum classification error
(MCE) isadiscriminative training objective that associates
with classification error directly [11]. The corresponding
training algorithm named generalized probabilistic descent
(GPD) agorithm has been used in Bell Labs for many
years. Our large database eval uations have indicated that the
MCE/GPD training can reduce training errors significantly,
especialy for the connected digit recognition tasks[3]. The
algorithm has been applied to this Aurora 3 evaluation.

G. Adaptation: There are two conditionsthat make un-
supervised adaptation for this task particularly challenging.
For one, no information of speaker’s identity or noise con-
ditionsis available. This means that a new, adapted model
has to be estimated for every utterance. Second, the amount
of adaptation data can be very scarce — as short as a mono-
syllable digit token.

The above conditions call for atransformation based ap-
proach like MLLR. The reason for this is that approaches
like MAP[14] adaptation tend to adapt the erroneously rec-
ognized models away from the correct direction and the
unseen(i.e., unrecognized) digits are left unmodified. But
even the use of a single, global MLLR transformation can
till be problematic when data for adaptation is in the order
of afew hundred milliseconds.

In this work we use the transformation-based approach



described in[15]. Herethe mean vectors of mixture compo-
nents, y, are adapted using adiagonal transformationmatrix,
D, plusatrandation vector, b, usingtherelation i = Dyu+b.
The transformation {D, b} is estimated in a maximum a
posteriori sense, where the prior distribution, g(D, b|®), is
based on a hybrid of hierarchical and empirical Bayes ap-
proaches. As complexity of the adaptation mapping can be
controlled smoothly using the transformation prior distribu-
tions, this approach scales well for adaptation data ranging
from mono-syllable digits to digit strings.

3. AURORA 3EVALUATION

We evaluated the above techniques on the Aurora 3 Spanish
and German databases. All thefeaturesin our evaluation are
39-dimensional vectors including 12 cepstral coefficients,
energy (co of DCT or short-term energy), plus their first
and second order time derivatives, with the exception that
the AM-FM feature uses 6 extra feature in additional to the
auditory cepstral coefficients plus their derivatives. For a
fair comparison, all the features were evaluated using the
same HBT model structure. Although we did not use the
standard HTK backend, the fixed model structure with the
same model topology and the same number of parameters
serves the same purpose for evaluation.

To speedup the training process, all the training data
were first ssgmented into the HBT unit level by pre-trained
HBT models on the LPCC feature. Initiad models were
trained based on the initial segmentation using the seg-
mental K-means algorithm [10] and the auditory feature.
The trained models were then used to segment the training
data again. The final models for different features were
trained based on the second segmentations. Compared to
the forward-backward al gorithm, the segmental K-meansis
much faster. Each approach is evaluated under three train-
ing and testing conditions as defined by the Aurora 3 task
as well-matched (WM), medium-matched (MM), and high-
mismatched (HM) experiments.

Spanish Database: Severa features were first evalu-
ated on the Spanish database. As shown in Table 1, the
approaches included: linear predictive coding coefficients
(LPCC), mel-frequency cepstral coefficients (MFCC), nor-
malized moment (Moment), auditory (Auditory or Aud.),
and combined auditory and AM-FM modulation (Aud. +
AM-FM) features. The training algorithm is maximum
likelihood estimate (MLE). The HBT models were used ex-
cept the MFCC case, where CD model was used with noise
compensation on the HM condition [18]. The average is
weighted average as defined in the standard spreadshest®.

Furthermore, thegeneralized probabilistic descent (GPD)
algorithm was applied to the LPCC, MFCC, and Auditory
features to train the MCE models. The online adaptation

IWeighted Average= 0.40WM + 0.35MM + 0.25HM.

Table 1: Comparisons on Different Features (%)

Spanish WM [ MM | HM | Avel
AuroraBasdline 869 | 73.7 | 42.2 | 71.11
LPCC + MLE 945 | 89.0 | 80.9 | 89.18
MFCC + MLE 96.2 | 91.2 | 855 | 91.77
Centroid + MLE 94.1 | 89.0 | 82.7 | 89.47
(Aud + AM-FM)+MLE | 95.2 | 88.3 | 85.2 | 90.29
Aud + MLE 96.0 | 91.0 | 86.2 | 91.80

Table 2: Comparisonson Training and Adaptation (%)

Spanish WM [ MM | HM | Ave!
LPCC+ MLE + GPD 95.3 | 89.7 | 834 | 90.37
MFCC + MLE + GPD 96.2 | 89.3 | 83.3 | 90.56
MFCC + GPD + Adapt. | 96.3 | 89.9 | 85.0 | 91.24
MFCC + ChD/MLE 96.5 - - -
Aud + MLE + GPD 96.2 | 91.0 | 87.1 | 9211
Aud + GPD + Adapt. 96.2 | 91.1 | 87.7 | 92.14

Aud + ChD/MLE 95.6 - - -

algorithm described above was applied to the MFCC and
Auditory featuresto further improve the performances. The
resultsare listed in Table 2.

German Database: Theprocedureof the Germandatabase

evaluation is similar to the Spanish one and the results are
listed in Tables 3 and 4. Thetraining and testing utterances
in the German database are much less than the Spanish one.
Due to the small amount of data, the evaluation results may
not be as significant as using a larger database.

Table 3: Comparisons on Different Features (%)

German WM | MM | HM | Average
AuroraBasdline | 90.6 | 79.1 | 74.3 82.50
LPCC + MLE 915 | 80.8 | 845 86.01
MFCC + MLE 92.2 | 80.3 | 85.8 86.44
Moment + MLE | 90.3 | 77.5 | 83.6 84.15
Aud + MLE 929 | 835 | 86.6 88.04

4. SUMMARY OF EVALUATIONS

Aurora 2 Evaluation: Our Aurora 2 system differs radi-
cally from last year system [1]. We followed an approach
fairly similar to Ellis work [17]. The basic ideais to use
a neural network to derive the posterior probability of the
head, body and tail portion of a digit segment. The pos-
terior probability vector is then used as feature vector and
an HBT recognizer is built. We built two systems based on
this principle. In the first one, the input of the neural net-
work consists of a window of consecutive MFCC vectors,
while the output consists of nodes representing the head,



Table 4: Comparisons on Training and Adaptation (%)

German WM | MM | HM | Avel
LPCC + MLE + GPD 92.3 | 80.7 | 85.0 | 86.42
MFCC + MLE + GPD 926 | 81.0 | 855 | 86.77
MFCC + GPD + Adapt. | 92.6 | 81.5 | 86.4 | 87.17
MFCC + ChD/MLE 92.5 - - -
Aud + MLE + GPD 929 | 835 | 86.6 | 83.04
Aud + GPD + Adapt. 929 | 835 | 86.6 | 83.04
Aud + ChD/MLE 92.3 - - -

Table5: Summary of Aurora?2 Average Word Accuracy (%)

TrainingMode | SetA | SetB | Set C | Overall
Multicondition | 93.72 | 92.84 | 93.34 | 93.29
Clean Only 86.95 | 87.71 | 83.98 | 86.66
Average 90.33 | 90.27 | 88.66 | 89.98

body and tail of al digits. The second system is similar
to the first one, except that the delta MFCCs are aso fed
to the neural network. We also built a baseline HBT sys-
tem in a standard way using MFCC features, as described
in[1]. In these 3 systems, and for the clean only training
condition, the input test MFCC vectors have been processed
using the noise compensation technique described in [18].
The recognition results of these 3 systems are finally com-
bined using ROVER, and are presented in Table 5. This
illustrates that the use of the non-linear feature extraction
significantly improvesthe recognition performance. Reader
arerefered to [16] for full details.

Aurora3Evaluation: Thesummariesof Aurora3word
error rates and relative improvement are listed in Tables 6
and 7 followed the standard spreadsheet. The numbers for
the Spanish and German columns are from Tables 2 and 4,
respectively.
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