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ABSTRACT

In this paper we study various front-end features, mod-
eling and adaptation algorithms on the Aurora 3 databases,
including auditory, moment, and AM-FM modulation fea-
tures, context-dependent digit models, segmental K-means
training, discriminative training, and model adaptations.
The evaluation results on Aurora 3 are presented with a
brief summary of our Aurora 2 results.

1. INTRODUCTION

The Aurora evaluation is for researchers to test their algo-
rithms on noise robustness and compare results measured
on the same databases. So far, there are two tasks on the
Aurora evaluation, Aurora 2 and 3, both are for connected
digit recognition. While the Aurora 2 databases use the
controlled experiments by adding noise digitally to clean
English digit strings [1], the Aurora 3 databases are col-
lected in a real-world car environment in 4 languages. In
this paper, we report our evaluation results on two of the
languages, Spanish and German.

2. BELL LABS APPROACHES

In this section, we present our baseline system then describe
the different feature sets that have been used for this eval-
uation. Alternative training strategies and acoustic model
adaptation techniques are also reviewed.

A. Context-Dependent Model: Similar to last year ap-
proach [1], we have decided to use context-dependent (CD)
digit models, together with Bell Labs recognition engine as
backend. This contrasts with the official Aurora backend
that is based on whole-word digit models and the HTK en-
gine. The official backend setup typically leads to poorer
results, especially in larger databases, and we believe that a
better baseline is beneficial to properly study the effect of
different front-ends on the final recognition performance.

Last year, we investigated several approaches to build
CD digit models. Given the limited amount of training
data, especially in the Aurora3 databases, it is required to
rely on some tying techniques to build CD digit models.
The Head-Body-Tail digit model structure (HBT) assumes
that CD digit models are built by concatenating a left-
context-dependent unit (head) with a context-independent
unit (body) followed by a right-context-dependentunit (tail).
For example, assuming that the lexicon contains 10 digits
plus a silence model, each digit model consists of a set of 1
body, 11 heads and 11 tails (representing all left/right con-
texts) [2]. We typically model each head and tail with a
3-state HMM, while a 4-state HMM is used for each body.
Most of the experiments done this year have been based on
the HBT structure. CD digit models can also be built as tri-
phone models using a decision tree. This is the approach we
introduced last year [1], and some of this year experiments
have been carried out using this model topology.

B. Auditory Feature: The new auditory front-end in
our recognition system was developed to mimic the robust
human hearing in adverse acoustic environments [3, 4]. In
the front-end, efficient signal processing functions were im-
plemented to satisfy both real-time and computation cost
requirements. Based on the analysis of the outer and mid-
dle ear, a transfer function was constructed to replace the
commonly used preemphasis filter, and then a new set of
digital auditory filters, which simulate auditory filtering in
the cochlea, replaces those used in the MFCC and PLP.
The auditory feature extraction procedure consists of: an
outer-middle-ear transfer function, FFT, frequency conver-
sion from linear to the Bark scale, auditory filtering, non-
linearity, and discrete cosine transform (DCT). In our previ-
ous study[3], the feature has been evaluated in two tasks:
connected-digit and large vocabulary, continuous speech
recognition under various noise conditions, using both hand-
set and hands-free data in landline and wireless transmission
with additive car and babble noise. Compared with the
LPCC, MFCC, MEL-LPCC, and PLP features, the audi-
tory feature achieved significant performance improvement



in the connected-digit and the Wall Street Journal tasks[3].
The major improvement is due to the new auditory filters.

C. Normalized Moment Feature: Spectral subband
centroid (SSC) feature was first proposed for speech recog-
nition [5] and then extended by incorporating the dynamic
SSC [6]. Inspired by the concept of SSC, a more gener-
alized, normalized subband spectral moments (NSSM) was
proposed for noisy speech recognition [7]. In brief, we di-
vide the full band into total of

�
subbands, the NSSM of

order p for the i-th subband is defined by
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indicates the i-th subband moment of order$ at time
�
,
� � � � � is the frequency response of the i-th

bandpass filter, and
� �	��
 � � the short-term power spectrum

of the speech signal at frame
�
. In this paper, the NSSMs

of order 2 are applied to the Aurora 3 task with a HBT
model structure. Each frame is represented in the energy
and 12 NSSM features estimated from unsmoothed FFT
power spectrum using 12 rectangular band-pass filters with
50% overlap, distributed along a linear scale [7].

D. AM-FM Modulation Feature: There exists some
evidence that leads us to analyze speech signals in their
amplitude and frequency modulation(AM-FM) components
which vary continuously. We estimate these variations using
the Teager-Kaiser energy-tracking operator [9] energy sep-
aration algorithm (ESA). This algorithm demodulates nar-
rowband AM-FM signals by tracking the physical energy
implicit in the source and separating it into amplitude and
frequency components. For implementation purpose, we
first convert discrete samples into corresponding continuous
signals by using smoothing splines [8] before we apply the
continuous-time ESA. In speech recognition experiments we
create a hybrid feature vector by augmenting the standard
auditory feature vector with the FM-AM information.

The extraction of modulation features is as follows: (i) A
filterbank of six, 50% overlapped Gabor bandpass filters
with center frequencies near the averaged formant frequen-
cies, is used. (ii) The output from each Gabor bandpass
filter is demodulated via the Spline-ESA into instantaneous
amplitude, % �	��� , and frequency, & ����� , components. (iii) The
lowpassed % ����� and & ����� are segmented into 30 ms frames,
updated every 10 ms. (iv) For each analysis frame and each
band, the weighted mean ')( and standard deviation *+( of
the instantaneous frequency signal are estimated:
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where 8 is frame length. (v) The FM percentage in each
band, 9 � � *+( 2 ')( , is computed.

E. Channel-Dependent (ChD) Model: In Aurora 3,
the well-matched (WM) training scenario pools together
heterogeneous data, close-talking and hands-free micro-
phone recordings, based on a multi-style training paradigm.
Since the well matched scenario is based on two very dis-
tinct environments, close-talking and hands-free. We build
condition-dependent models by adapting a condition inde-
pendent model. The condition independent model is built
on the official WM training set. This model can then be
adapted to both the hands-free and close-talking data by
using SMAP [13].

Since we now have 2 models available for recognition,
we need to decide which one should be used for each test
utterance. This can be simply done by running recognition
in parallel using the hands-free and close-talking models,
and select the recognition hypothesis with the highest score.
Using MFCC feature and HBT digit models, the baseline
word error rate (WER) on the Spanish data is 4.0% on the
WM test set. When using an oracle to select which model
should be used for each test utterance, we obtain 0.6% WER
on the close-talking data, and 6.5% WER on the hands-free
data, for an average of 3.5% WER. By selecting the model
based on the highest recognition score, the average WER on
WM is 3.5%, similar to the oracle result. This illustrates the
heterogeneity of the data, and indicates that the channel can
be identified with high accuracy on this database.

F. MCE/GPD Training: Minimum classification error
(MCE) is a discriminative training objective that associates
with classification error directly [11]. The corresponding
training algorithm named generalized probabilistic descent
(GPD) algorithm has been used in Bell Labs for many
years. Our large database evaluations have indicated that the
MCE/GPD training can reduce training errors significantly,
especially for the connected digit recognition tasks [3]. The
algorithm has been applied to this Aurora 3 evaluation.

G. Adaptation: There are two conditions that make un-
supervised adaptation for this task particularly challenging.
For one, no information of speaker’s identity or noise con-
ditions is available. This means that a new, adapted model
has to be estimated for every utterance. Second, the amount
of adaptation data can be very scarce – as short as a mono-
syllable digit token.

The above conditions call for a transformation based ap-
proach like MLLR. The reason for this is that approaches
like MAP [14] adaptation tend to adapt the erroneously rec-
ognized models away from the correct direction and the
unseen(i.e., unrecognized) digits are left unmodified. But
even the use of a single, global MLLR transformation can
still be problematic when data for adaptation is in the order
of a few hundred milliseconds.

In this work we use the transformation-based approach



described in [15]. Here the mean vectors of mixture compo-
nents, : , are adapted using a diagonal transformation matrix,;

, plus a translation vector, < , using the relation ˆ: �=; : 4 </>
The transformation ? ;@
 <BA is estimated in a maximum a
posteriori sense, where the prior distribution, C �7;@
 <EDΦ � , is
based on a hybrid of hierarchical and empirical Bayes ap-
proaches. As complexity of the adaptation mapping can be
controlled smoothly using the transformation prior distribu-
tions, this approach scales well for adaptation data ranging
from mono-syllable digits to digit strings.

3. AURORA 3 EVALUATION

We evaluated the above techniques on the Aurora 3 Spanish
and German databases. All the features in our evaluation are
39-dimensional vectors including 12 cepstral coefficients,
energy ( F 0 of DCT or short-term energy), plus their first
and second order time derivatives, with the exception that
the AM-FM feature uses 6 extra feature in additional to the
auditory cepstral coefficients plus their derivatives. For a
fair comparison, all the features were evaluated using the
same HBT model structure. Although we did not use the
standard HTK backend, the fixed model structure with the
same model topology and the same number of parameters
serves the same purpose for evaluation.

To speedup the training process, all the training data
were first segmented into the HBT unit level by pre-trained
HBT models on the LPCC feature. Initial models were
trained based on the initial segmentation using the seg-
mental K-means algorithm [10] and the auditory feature.
The trained models were then used to segment the training
data again. The final models for different features were
trained based on the second segmentations. Compared to
the forward-backward algorithm, the segmental K-means is
much faster. Each approach is evaluated under three train-
ing and testing conditions as defined by the Aurora 3 task
as well-matched (WM), medium-matched (MM), and high-
mismatched (HM) experiments.

Spanish Database: Several features were first evalu-
ated on the Spanish database. As shown in Table 1, the
approaches included: linear predictive coding coefficients
(LPCC), mel-frequency cepstral coefficients (MFCC), nor-
malized moment (Moment), auditory (Auditory or Aud.),
and combined auditory and AM-FM modulation (Aud. +
AM-FM) features. The training algorithm is maximum
likelihood estimate (MLE). The HBT models were used ex-
cept the MFCC case, where CD model was used with noise
compensation on the HM condition [18]. The average is
weighted average as defined in the standard spreadsheet1.

Furthermore, the generalizedprobabilistic descent (GPD)
algorithm was applied to the LPCC, MFCC, and Auditory
features to train the MCE models. The online adaptation

1Weighted Average = 0.40WM + 0.35MM + 0.25HM.

Table 1: Comparisons on Different Features (%)
Spanish WM MM HM Ave.1

Aurora Baseline 86.9 73.7 42.2 71.11
LPCC + MLE 94.5 89.0 80.9 89.18
MFCC + MLE 96.2 91.2 85.5 91.77
Centroid + MLE 94.1 89.0 82.7 89.47
(Aud + AM-FM)+MLE 95.2 88.3 85.2 90.29
Aud + MLE 96.0 91.0 86.2 91.80

Table 2: Comparisons on Training and Adaptation (%)
Spanish WM MM HM Ave.1

LPCC + MLE + GPD 95.3 89.7 83.4 90.37
MFCC + MLE + GPD 96.2 89.3 83.3 90.56
MFCC + GPD + Adapt. 96.3 89.9 85.0 91.24
MFCC + ChD/MLE 96.5 – – –
Aud + MLE + GPD 96.2 91.0 87.1 92.11
Aud + GPD + Adapt. 96.2 91.1 87.7 92.14
Aud + ChD/MLE 95.6 – – –

algorithm described above was applied to the MFCC and
Auditory features to further improve the performances. The
results are listed in Table 2.

GermanDatabase: Theprocedure of the Germandatabase
evaluation is similar to the Spanish one and the results are
listed in Tables 3 and 4. The training and testing utterances
in the German database are much less than the Spanish one.
Due to the small amount of data, the evaluation results may
not be as significant as using a larger database.

Table 3: Comparisons on Different Features (%)
German WM MM HM Average1

Aurora Baseline 90.6 79.1 74.3 82.50
LPCC + MLE 91.5 80.8 84.5 86.01
MFCC + MLE 92.2 80.3 85.8 86.44
Moment + MLE 90.3 77.5 83.6 84.15
Aud + MLE 92.9 83.5 86.6 88.04

4. SUMMARY OF EVALUATIONS

Aurora 2 Evaluation: Our Aurora 2 system differs radi-
cally from last year system [1]. We followed an approach
fairly similar to Ellis’ work [17]. The basic idea is to use
a neural network to derive the posterior probability of the
head, body and tail portion of a digit segment. The pos-
terior probability vector is then used as feature vector and
an HBT recognizer is built. We built two systems based on
this principle. In the first one, the input of the neural net-
work consists of a window of consecutive MFCC vectors,
while the output consists of nodes representing the head,



Table 4: Comparisons on Training and Adaptation (%)
German WM MM HM Ave.1

LPCC + MLE + GPD 92.3 80.7 85.0 86.42
MFCC + MLE + GPD 92.6 81.0 85.5 86.77
MFCC + GPD + Adapt. 92.6 81.5 86.4 87.17
MFCC + ChD/MLE 92.5 – – –
Aud + MLE + GPD 92.9 83.5 86.6 88.04
Aud + GPD + Adapt. 92.9 83.5 86.6 88.04
Aud + ChD/MLE 92.3 – – –

Table 5: Summary of Aurora 2 Average Word Accuracy (%)
Training Mode Set A Set B Set C Overall
Multicondition 93.72 92.84 93.34 93.29

Clean Only 86.95 87.71 83.98 86.66
Average 90.33 90.27 88.66 89.98

body and tail of all digits. The second system is similar
to the first one, except that the delta MFCCs are also fed
to the neural network. We also built a baseline HBT sys-
tem in a standard way using MFCC features, as described
in [1]. In these 3 systems, and for the clean only training
condition, the input test MFCC vectors have been processed
using the noise compensation technique described in [18].
The recognition results of these 3 systems are finally com-
bined using ROVER, and are presented in Table 5. This
illustrates that the use of the non-linear feature extraction
significantly improves the recognition performance. Reader
are refered to [16] for full details.

Aurora 3 Evaluation: The summaries of Aurora 3 word
error rates and relative improvement are listed in Tables 6
and 7 followed the standard spreadsheet. The numbers for
the Spanish and German columns are from Tables 2 and 4,
respectively.

5. REFERENCES

[1] M. Afify, H. Jiang, F. Korkmazskiy, C.-H.Lee, Q. Li, O. Siohan, F. K.
Soong, and A. C. Surendran, “Evaluating the aurora connected digit
recognition task – A Bell Labs approach,” in Proc. of EuroSpeech,
pp. 633–637, Sept. 2001.

[2] W. Chou, C.-H. Lee, and B.-H. Juang, "Minimum Error Rate Train-
ing of Inter-word Context Dependent Acoustic Model Units in
Speech Recognition," Proc. ICSLP-94, Sept. 1994.

[3] Q. Li, F. K. Soong, and O. Siohan, “An Auditory System-Based
Feature for Robust Speech Recognition,” Proce. of Eurospeech, vol.
1, pp. 619–622, 2001.

[4] Q. Li, F. K. Soong, and O. Siohan, “A High-Performance Auditory
Feature for Robust Speech Recognition,” Proc. ICSLP, 2000.

[5] K. K. Paliwal, “Spectral subband centroid features for speech recog-
nition,” in Proc. IEEE ICASSP 1998, vol. II, pp. 617-620.

Table 6: Summary of Aurora 3 Word Error Rate (%)
Spanish German

Well (x40%) 3.5 7.1
Mid (x35%) 8.8 16.5
High (x25%) 12.3 13.4
Overall 7.56 11.97

Table 7: Summary of Aurora 3 Relative Improvement (%)
Spanish German

Well (x40%) 50.42 19.32
Mid (x35%) 47.27 12.97
High (x25%) 74.61 50.06
Overall 55.37 24.78

[6] J. Chen, Y. Huang, Q. Li, and K. K. Paliwal, “Dynamic spectral
subband centroid features for robust speech recognition,” submitted
to the IEEE Signal Proc. Letters.

[7] J. Chen, Y. Huang, Q. Li, and F. K. Soong, “Recognition of noisy
speech using normalized moments,” submitted to ICSLP’2002.

[8] D. Dimitriadis and P. Maragos, “An Improved Energy Demodulation
Algorithm Using Splines”, Proc. ICASSP-01, May 2001.

[9] P. Maragos, J. F. Kaiser, and T. F. Quatieri, “Energy seprattion in
signal modulationswith application to speech analysis", IEEE Trans.
Signal Proc. vol. 41, pp. 3024-3051, Oct. 1993.

[10] L. R. Rabiner, J. G. Wilpon and B.-H. Juang, “A segmental k-means
training procedure for connected word recognition",AT&TTechnical
Journal, vol. 65, no. 3, May/June 1986.

[11] B.-H. Juang, W. Chou, and C.-H. Lee. “Minimum classification error
rate methods for speech recognition," IEEE Trans. on Speech and
Audio Process., vol. 5, no. 5, pp. 257-265, May 1997.

[12] W. Reichl and W. Chou, “Robust decision tree state tying for contin-
uous speech recognition,” IEEE Trans. on Speech and Audio Proc.,
vol. 8, pp. 555–566, Sept. 2000.

[13] K. Shinoda and C.-H. Lee, “A structural Bayes approach to speaker
adaptation,” IEEE Trans. on Speech and Audio Proc., vol. 9, Mar.
2001.

[14] J.-L. Gauvain and C.-H. Lee, “Maximum a Posteriori Estimation for
Multivariate Gaussian Mixture Observations of Markov Chains,"
IEEE Trans. on Speech and Audio Proc., vol. 2, no. 2, April 1994.

[15] T. A. Myrvoll, K. K. Paliwal and T. Svendsen, “Fast Adaptation
using Constrained Affine Transformations with Hierarchical Priors",
Eurospeech, 2001.

[16] B. Launay, O. Siohan, A. C. Surendran, and C.-H. Lee, “Towards
knowledge-based features for HMM based large vocabulary auto-
matic speech recognition,” in Proc. ICASSP, 2002.

[17] D. Ellis and M. J. R. Gomez, “Investigations into Tandem acoustic
modeling for the Aurora task,” in Proc. of EuroSpeech, 2001.

[18] M. Afify and O. Siohan, “Sequential noise estimation with optimal
forgetting for robust speech recognition,” in Proc. ICASSP, May
2001.


