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ABSTRACT
An auditory feature extraction algorithm for robust speech
recognition in adverse acoustic environments is proposed.
Based on the analysis of human auditory system, the fea-
ture extraction algorithm consists of several modules: FFT,
outer-middle-ear transfer function, frequency conversion from
linear to Bark scales, auditory filtering, nonlinearity, and dis-
crete cosine transform. Three recognition experiments have
been conducted on connected digit recognition in wireless
and land-line communications using handsets and hands-
free microphones. Compared to LPCC and MFCC features,
the proposed feature has shown 11% to 23% error-rate re-
ductions on average in handset and hands-free acoustic en-
vironments in the experiments.

1. INTRODUCTION

Feature extraction is the first crucial block in any automatic
speech recognition (ASR) system. Currently, there are two
major approaches to the feature extraction: modeling either
human voice production or perception systems. The most
popular LPCC and MFCC features are from modeling each
of the systems respectively. To achieve better and more
robust ASR performance, especially in adverse acoustic en-
vironments, a new feature extraction algorithm is desirable.
After an analysis of the above two approaches, we decided
to pursue an auditory system approach for a new feature.

The human auditory system consists of the following
modules: outer ear, middle ear, cochlea, hair cells, and nerve
system. It converts the sound represented by air pressure to
nerve firing rates in various frequency bands for auditory
cognition in the brain. Instead of modeling all of the me-
chanical, hydro-dynamic, electrical, or chemical activities
in each of the modules in detail, we model the functions
of each of modules from a view of information and signal
processing.

2. PROPOSED AUDITORY FEATURE

A schematic diagram of the proposed auditory feature is
shown in Fig. 1. The speech signal is first sampled at 8

KHz sampling rate, then blocked into 240 samples, 30 ms
block. Hamming window is then applied, and the window
is shifted every 80 samples. The data at each time frame
are then zero-padded to produce a 1024-point FFT, which
generates a spectrum of 512 values. The signal processing
is then performed in the frequency domain from this point
on. The magnitude of the spectrum is processed through
a transfer function (TF) that models the gain of pressure
in both outer and middle ears approximately. The TF is
shown in Fig. 2 as the solid line, which is essentially the
sum of the outer-ear TF (dash-dot line) and middle-ear TF
(dashed line) with little modification on low frequency bands
to compensate telephone channels. The TFs were derived
from the plots of psychological experiments in [1] and [2],
respectively.

The spectrum is then converted to Bark scale [3] to emu-
late the frequency scale in the cochlea. The relation between
the Bark and linear scale is shown in Fig. 3. The 512 data
points are equally spaced in the Bark scale between 2.0 to
16.4 Barks, which corresponding to a linear frequency range
from 200 to 3500 Hz. The 200 Hz cut-off frequency is sug-
gested by the outer-middle-ear TF in Fig. 2 while the 3500
Hz cut-off frequency is chosen for telephone band applica-
tions. Each point in Bark is projected onto a point in Hz
as shown in Fig. 3. The value of the projected point is
then obtained by linear interpolation using the values of its
neighboring points in the linear domain.

In the next step, an auditory filter is applied to smooth
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Figure 1: Schematic diagram of the proposed feature.
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Figure 2: Outer-middle-ear transformation function.

out the speech spectrum as in the cochlea. The shape of the
auditory filter is plotted in Fig. 4 in linear (top) and logarith-
mic (bottom) scales. It is modified from a psychophysical
measurement of the frequency response of cochlea using Pe-
terson’s method [4]. The auditory filter operates as moving-
average filtering has output at every point in the spectrum
from 2.0 to 16.4 Barks. In the frequency domain, we con-
sider the spectral envelopes of speech formants as signals
while viewing the envelops of pitch harmonics as noise.
Since the filter is in a similar shape to the formant envelops,
it has high response to speech formants. On the other hand,
since the size of the filter is much wider than harmonic pe-
riods and noise, the filter has low response to harmonics
and noise; therefore, the function of the auditory filter is to
improve the signal-to-noise ratio in the frequency domain.

In the last step, the smoothed spectrum is processed
through a nonlinear function of logarithm to simulate the
nonlinearity in discharge rates of auditory nerves, followed
by a discrete cosine transform (DCT) to convert the loga-
rithmic spectrum to 12 DCT coefficients. DCT is similar
to the cepstral transform. It actually performs a second
step to further smooth out the pitch harmonics in the spec-
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Figure 3: Frequency conversion from linear to Bark scale.

trum. Short-term (ST) energy by accumulating the power
of the blocked speech samples before Hamming window is
selected as the energy term in the feature.
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Figure 4: Shape of the auditory filter in linear (top) and
logarithmic (bottom) scales.

We use the following example to show the signal pro-
cessing procedures in the proposed feature. A male’s voice:
“Redial last number” was recorded simultaneously by a
close-talking microphone, Fig. 5 (top), and a hands-free
microphone, Fig. 5 (bottom). The corresponding spectro-
grams after FFT, outer-middle-ear transform function, and
linear-to-Bark conversion are shown in Fig. 6. The spec-
trograms smoothed by the auditory filtering are plotted in
Fig. 7. The moving-average filter is operated from low to
high Barks for every frame. To show the further smoothing
effect of the DCT or cepstral transform, we reconstructed
the spectrograms from cepstral coefficients through IFFT in
Fig. 8, where we observe that DCT smoothed out the pitch
harmonics and blurred the background noise.

Compared to the LPCC feature, the proposed feature is
to model the auditory perception system instead of the voice
production system. Compared to the MFCC feature [5], the
new feature includes an extra outer-and-middle-ear TF and
uses an auditory filter determined from psychoacoustic ex-
periments [4] instead of the triangular filters used in MFCC
[5]. In addition, the Mel frequency scale are replaced by
Bark scale and spectral data are spaced equally in the Bark
scale through linear interpolation before auditory filtering.
Compared to the PLP feature [6], the proposed feature uses
magnitude instead of power spectrum. The shape of the
auditory filter in the proposed system is closer to the shape
of real auditory system. Also, the resolution of filtering out-
put is the same as the spectrum while the resolution in the
PLP implementation is much lower as is in MFCC. In the
proposed feature, we use the outer-middle-ear TF from au-
ditory system study directly while PLP uses equal-loudness
preemphasis. Compared to RASTA feature [7], the proposed
approach uses different filters and different nonlinearities at
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Figure 5: Male’s voice: “Redial last number”.
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Figure 6: Spectrograms in Bark scale.

different processing stages. In summary, all the auditory-
based feature approaches mimic human auditory system one
way or another while different configurations may yield dif-
ferent performances. We try to construct a system as close to
the human auditory system as possible by applying the psy-
choacoustic experimental results directly while the compu-
tation speed, the system complexity, and the ASR back-end
were also considered in developing the proposed feature.

3. EXPERIMENTAL RESULTS

The proposed feature has been tested on a connected digit
recognition task and compared with LPCC and MFCC fea-
tures. All the experiments used 39 dimensional features
including energy, 12 cepstral or DCT coefficients, plus their
first and second order time derivatives. Ten-digit utterances
are used in all the tests and the performances are reported in
string error rates. There is no overlap between any training
and test utterances.
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Figure 7: Spectrograms after auditory filtering.

Time (Seconds)

C
rit

ic
al

 B
an

d 
R

at
e 

(B
ar

k)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
2

4

6

8

10

12

14

16

Time (Seconds)

C
rit

ic
al

 B
an

d 
R

at
e 

(B
ar

k)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
2

4

6

8

10

12

14

16

Figure 8: Spectrograms reconstructed from cepstrum.

3.1. Focus on Hand-Free Data

In this experiment, we used two CDMA wireless databases
named “Handset” and “Lapel”, respectively. The utterances
in Handset were recorded with handsets while the utterances
in Lapel were recorded with the microphones located on
speakers’ lapels. Handset has 769 and 256 utterances for
training and test while Lapel has 2,026 and 517 utterances
for training and test, respectively. Since Lapel has many
more training utterances than Handset, this experiment is
intended to show the robustness of the proposed feature in a
hands-free environment. The models are context-dependent
digit HMMs (10 states per digit and average 7 mixtures per
states). The state tying for every states in the models is
determined by decision trees [8]. There are totally 1,400
CD models with 800 tied states. The training algorithm is
based on maximum likelihood estimation (MLE). In Table 1,
the numbers are string error rates while the digit error rates
are given in parentheses. On average, the string error rates
for LPCC, MFCC, and the proposed features are 11.7%,



Table 1: Comparisons on String Error Rates (%) (digit
recognition error rates are in parentheses)

Data Handset Lapel Average
LPCC 9.4 (1.0) 13.9 (2.0) 11.7 (1.5)
MFCC 7.0 (0.9) 14.9 (1.9) 11.0 (1.4)

Proposed Feature 6.6 (0.9) 11.4 (1.5) 9.0 (1.2)

11.0%, and 9.0%, respectively. The proposed feature has
shown a 23% error rate reduction on average compared to
the standard LPCC cepstral feature.

3.2. Focus on Close-Talking Microphone Data

We further extended the experiment using 20 databases for
training and 4 databases for test. Since 19 training databases
were recorded with handsets in wireless and land-line en-
vironments and only Lapel was recorded by hands-free mi-
crophones, this experiment focuses on handset environment.
The model structure and training algorithm are the same as
above. In total, there are 42,243 training utterances. The
testing databases: Tele, Sdn10, Handset, and Lapel, have
518, 1685, 256, and 517 utterances, respectively. The ex-
perimental results in term of utterance error rates were listed
in Table 2. One average, the proposed feature shows an 18%
error reduction compared to the LPCC feature.

Table 2: Comparisons on String Error Rates (%)
Data Tele Sdn10 Handset Lapel Ave.

LPCC 7.0 14.7 7.0 21.3 12.5
Proposed 5.0 11.7 4.7 19.3 10.2

3.3. Head-Body-Tail (HBT) Digit Model

To evaluate the proposed feature with different HMM struc-
ture, we trained a set of HBT models [9] using the above
20 databases plus a database “Visor" (recorded with mi-
crophones mounted on the visor of a moving car), a total
of 44,123 utterances. The digit HBT model is context-
dependent across the “head" (first 3 states) and “tail" (last
3 states) while the “body" (4 states) is context independent.
After MLE training, the model was tested on 4 databases
as above. The utterance error rates are listed in Table 3.
The HBT models work better than the CD models. Again,
the new feature reduced the error rates on all the tested
databases. On average, the proposed feature has an 11%
error rate reduction compared to the LPCC feature.

4. CONCLUSIONS

An auditory based feature extraction algorithm was pro-
posed in this paper. There are several steps in computing

Table 3: String Error Rates of HBT Models (%)
Data Tele Sdn10 Handset Lapel Ave.

LPCC 5.8 13.1 5.9 18.0 10.7
Proposed 4.8 11.5 5.5 16.4 9.5

the proposed feature: FFT, outer-middle-ear TF, Bark scale
conversion, auditory filtering in the frequency domain, non-
linearity, and DCT. The experiments have shown that the
proposed feature reduced the string recognition error rates
in both close-talking and hands-free environments. On av-
erage, the error rate reductions are from 11% to 23%. The
error rates can be further reduced if we apply a discriminant
training algorithm with the proposed feature. We are in the
process of extending the proposed feature to wide band and
large vocabulary continuous speech recognition.
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