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ABSTRACT

To implement speaker verification (SV) technology for real-
world applications with a large user population, the system
cost becomes animportant issue. One needsafast algorithm
which can support more usersin a central telephone switch
given the limited hardware, or can reduce the hardware re-
guirement on awirelesshandset. In[1], afast, sequential de-
coding algorithm for left-to-right HMM was proposed. The
algorithm is based on a sequential detection scheme which
isasymptotically optimal in the sense of detecting apossible
changein distribution asreliably and quickly as possible. In
this paper, the algorithm is evaluated in a fixed-phrase SV
system on a database with 23,578 utterances recorded from
100 speakers. The experimental resultsshow that the decod-
ing speed of the proposed algorithm is about 7 to 10 times
faster than the Viterbi algorithm while the accuracy isin an
acceptablelevel. Theresultsindicatethat the proposed algo-
rithm can also be applied to speaker identification, utterance
verification, audio segmentation, voice/silence detection and
many other applications.

1. INTRODUCTION

When applying speaker verification (SV) technology to real -
world applications, the system performance, including ac-
curacy and response time, and cost have to be considered
in implementation. From an application point of view, we
want a system with acceptable performance while keeping
the system cost as low as possible. Among different SV al-
gorithms, the hidden Markov model (HM M) based approach
gave us the best verification accuragy [2, 3, 4]. Inthe HMM
approach, most of the computation is on HMM decoding.
Therefore, in this paper, a fast HMM decoding algorithm
with low complexity is evaluated for SV.

For an SV system implemented in a central telephone
switch to support a large user population, given the limited
hardware, e.g. afixed number of speech processing boards,
afast, low complexity agorithm means the same hardware

can support moretel ephonechannel swith the sameresponse
time, thus, the cost per channel can be lower. On the other
hand, for a wireless handset or other equipment in which
SV needs to be processed locally, a fast, low complexity
algorithm can provide faster response, or reduce the cost on
hardware while keeping the same response time.

Recently, afast decoding algorithm for | eft-to-right HMM
was proposed [1] based on a sequential detection scheme
[5, 6]. The fast and low complexity property of the al-
gorithm has the potential to meet the above requirements.
Therefore, in this paper, we evaluate the algorithm on a
fixed-phrase SV system and compare its performance with
the Viterbi decoding algorithm in the terms of equal-error
rate and decoding speed.

Asiswell known, HMM isaparametric statistical model
with a set of states which characterize the evolution of a
non-stationary processin speech through a set of short-time
stationary events. Within each state, the distribution of the
stochastic processisusually modeled by Gaussian mixtures,
and the distribution changes from state to state sequentially
inleft-to-right HMM. The Viterbi algorithm, from graph and
network theory, has been widely used for HMM decoding.
It is optimal in the sense of maximum likelihood, but it is
dow and complex, especially in a full-search implementa-
tionwhich hasbeen used in SV. The proposed algorithmisto
determine the changes in the distribution between different
states, then finds the state boundary and computeslikelihood
scores or other kinds of scores sequentially [1].

2. FAST HMM DECODING ALGORITHM

Let o,, denote an observation vector at time n, and p1(o,,)
and p2(o,, ) bethe density functions of well known, distinct,
discrete, and mutually independent stochastic processes. In
the case of HMM decoding, they are the density functionsof
two connected states, e.g. state1 and state 2 respectively, and
the observed vector sequenceisinitialy generated in state 1.
Given the observation vector sequence, O = {o,;n > 1},



and the density functions p1(o,,) and py(o,,), the objective
isto detect apossible p; to p, change asreliably and quickly
aspossible. A sequential detection scheme was proposed by
Page [5, 6]. It is asymptotically optimum in the sense that
it requires the minimum possible expected sample size for
decision, subject to a false alarm constraint [6, 7]. In [1],
afast HMM decoding algorithm based on the scheme was
proposed as follows.

Select atime threshold ¢5 > 0. Observe data sequen-
tially, and decide that the p1 to p, change occurs, if
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where ¢ > 0 is asmall number or can be just zero as we
used in the experiments in this paper, R;(o’) is defined as
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and the last point £ of p; can be determined by
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Here, we assume that the duration of p, is not less than ¢,
and p; # po.

Zlog&
1
@
t
p I
log—3- |
ooy, |
(b) !
1 2 3 4 : 6 7 8 | 10 11
Statel | State2 | State3 !
Py e o o o ¢ o @ }
() Py R EEEEEEEE
Ps i e e 0 0o 0 0 0

Figure 1: The scheme of the proposed decoding algorithm:
(a) the end-point detection for state 1, ¢s; (b) the end-point
detection for state 2, ¢g; and (c) the grid pointsfor p1, p, and
p3 computations (dots).

Multiple state segmentations in aleft-to-right HMM can
be realized by repeating the above procedure, i.e., to deter-
mine the changes of density functions from p; of state 1 to

p2 Of state 2, from p, to p3, and so on, sequentially. We
use Fig. 1 to illustrate the concept. Fig. 1 (a) shows the
schemeto determinethe end point of state 1. Thecirclesare
the accumulated ratio values. Letts = 2, Eq. (1) and Eq.
(2) are evaluated at each step sequentially. At ¢ = t7, we
havet; —t5s > t; = 2and T(o’) > ¢ > 0. Thus, the end
point of state 1 is#¢s. Asshownin Fig. 1 (c), so far, only
p1 and p, are involved in the computation, where each dot
represents one probability computation. The test continues
from¢ = tg for state 2 as shown in Fig. 1(b). Following the
same procedure as above, the determined end point for state
2 istg. It involvesthe computation from ¢g to ¢11 for p, and
p3 asshownin Fig. 1 (c).

As analyzed in [1], the speedup of the proposed algo-
rithm compared with a widely used implementation of a
full-search Viterbi algorithm isin the order of
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(5)
where C' is the number of floating point operations at each
grid point for log probability as shown in Fig. 1 (c), N is
the total number of states, 7" is the total number of frames,
and ¢5 isthe timethreshold. This formula has been verified
numerically by speech examples in term of floating point
operations (Flops) in [1].

When ¢5 can not be determined precisaly, a practical
approach isto run the proposed algorithm more than oncein
the order of large to small ¢5(7), e.0. ¢5(i) = {6, 4, 2}, then
select the largest score. Assuming the the log probability
in each grid point is saved from the first decoding with the
largest ¢5(7), the number of additions is approximately in
the order of

S =

2[T + (N = 1)t5(1)] (C +2)
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where t5(1) = max{ts(¢)}/2,. Since C' > ts5(1), the
speedup is approximately the same as in Eq. (5), where
ts = tg(l).

3. FIXED-PHRASE SV SYSTEM

We selected a fixed-phrase SV system [2, 3, 4] to evaluate
the proposed a gorithm because the system is attractive to
real-world applications.

The feature vector in this experiment is composed of 12
cepstrum and 12 delta cepstrum coefficients. The cepstrum
is derived from a 10th order LPC analysis over a 30 ms
window. Thefeature vectors are updated at 10 msintervals.



During enrollment, assumefivetokensof atruespeaker’s
pass-phrases are collected and verified through a verbal in-
formation verification (V1V) procedure [4, 8] from five dif-
ferent sessions. A speaker-dependent (SD) target model, A,
isthen trained for the whole phrase. The model is aleft-to-
right HMM and the number of the states is about 1.5 times
the total number of phonemesin the pass-phrase. There are
4 Gaussian mixtures associated with each state[2].

A block diagram of the test session is shown in Fig.
2. After the speaker claims the identity, the system expects
the same phrase obtained in the training session. First, the
input pass-phrase is segmented into silence and voice by
forced decoding using SI phone models and the phoneme
transcription saved in the user’s profile. If a significantly
different phrase is given, the phrase could be rejected by the
Sl phoneme decoding at this stage. Cepstral mean subtrac-
tion (CMS) isthen conducted based on the segmentation for
channel equalization. The voice portion, O, of the pass-
phrase is used to compute two log-likelihood (LL) scores
by force decoding: atarget score, L(O, /\;), using the SD
target model A, and a background score, L(O, A;), using
the background model A, which is concatenated SI phone
HMM’strained on atel ephone speech database from differ-
ent speakers and texts [2]. Each phone HMM has 3 states
with 32 Gaussian components associated with each state.
Dueto unreliable variance estimates from limited amount of
training data, a global variance estimate is used as a com-
mon variance to all Gaussian components [2] in the target
models. A log-likelihood-ratio (LLR) score,

Lr(O;A;A) = L(O,A) — L(O,Ay),  (7)

is then calculated for the finial decision on rejection or ac-
ceptance by comparing the score with a threshold value.
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Figure 2: A fixed-phrase speaker verification system

3.1. SV Experiments

The experimental database consists of fixed phrase utter-
ances recorded over the long distance telephone network by

100 speakers, 51 male and 49 female. The fixed phrase,
common to all speakers, is*“| pledge allegiance to the flag”
with an average length of 2.2 seconds and a 25-states | eft-to-
right HMM is used to model the whole phrase. For testing,
we used 40 utterances recorded from atrue speaker in dif-
ferent sessions (different tel ephone handsets and channel s at
different times), and 192 utterances recorded from 49 or 51
impostors of the same gender in different sessions.

In order to focus the evaluation on comparing the pro-
posed agorithm with the Viterbi algorithm, we only test
the algorithm on the target score computation, L(O, /),
and leave other modules of the system as before. The
proposed algorithm computes the log likelihood scores at
ts(i) = {2,4,6}3_,, and selects the largest score as the
decoding result.

The experimental results are listed in Table 1 for the
100 speakers. The performance is measured by the average
individual equal-error rates (EER’s) with SD thresholds and
by the speedup in computing the target score. The second
columnisthe system EER’swhen the final decisionis made
on the target LL score, L(O, ;). Thethird column is the
EER’swhenthedecisionismadeontheL L R scoreasdefined
in Eq. (7). The last column is the estimated speedups on
computing the target score using Eq. (5). The results show
that the proposed algorithm is about 7.6 timesfaster than the
full-search Viterbi algorithm on this task while the EER’s
are still acceptable for many applications. By applying the
proposed decoding algorithm, the EER’s on the LL scores
only increased slightly while the EER’s on the LLR scores
increased a lot although it is till in an acceptable range.
This can be improved by applying different ¢; values to
different states during the decoding. An algorithm which
can determinets precisely isneeded in the future research.

Table 1: Resultsin Average Individual EER’s

Algorithms LL LLR | Estimated
Scores | Scores | Speedups

Full-search Viterbi | 4.84% | 2.09% 1.0

Proposed algorithm | 5.26% | 3.07% 7.6

Since this experiment is to evaluate the proposed al-
gorithm, we did not include model adaptation in this ex-
periments. Also, in the target score computation, we used
the given voice/silence end-points from Sl decoding and
compute the score on the detected voice portion of the pass-
phrase. The actual EER’scan belower on both algorithmsif
the target score is computed by force decoding on the entire
pass-phase using the SD target model and a silence model
as reported in [4]. The length of a typical pass-phrase in
the database is about 3 seconds, i.e. 300 frames, including
silence and voice, when the target model has 25 states and
the silence model has 3 states as in the above experiment,
the estimated speedup for target score computation is 9.7.



For the background model consisted of 21 phonemes and
2 silence models with 3 states on each of the models, the
estimated speedup is 14.6. From our experiments, the beam
search algorithm for HMM decoding can not provide such
large speedup.

3.2. Sequential End-Point Detection

Inthe above section, we discussed the proposed algorithm on
an HMM application. Inthissection, weinvestigatethe fea-
sibility on other applications, such as speaker identification
(SID), audio segmentation, silence/voice segmentation, etc.
These applications can be considered as a detection prob-
lem between two models or among more than two models.
In SID, one speaker is usually modeled by one Gaussian
mixture model (GMM). In silence/voice segmentation, one
GMM can be used to model silence, another one can be
the fist or the last state of a voice HMM. Evaluating the
detection performance is similar to evaluate the end-point
detection between two statesin oneHMM since each HMM
state can be considered as one GMM. Here, we use the end-
point between the first and the second states in the above
experiment as an example.

Table2: Comparisonin End-Point Detectionwith the Viterbi

Algorithm
Differences Oframes | 1frames | > 1 frames
True speakers | 93.90% 3.38% 2.72%
Impostors 87.28% 6.65% 6.07%

Assuming the detected end-point form the Viterbi algo-
rithm and the proposed sequential algorithm is Eyjjterpi and
Eseq respectively. The end-point difference is defined as
|Eviterbi — Eseq|- The experimental results are shown in
Table 2. Among 3970 tested pass-phrases from true speak-
ers, the proposed algorithm provides the exactly the same
end points as the Viterbi algorithm on 93.90% of the tested
pass-phrases, and 3.38% with one frame difference. Totaly,
19608 pass-phrases from the impostors are evaluated. The
difference on the impostor’ s pass-phraseis larger due to the
mismatched model. Actually, this can be considered as an
advantage to the system performance. It implies that the
impostors' scores on the target model will be lower since
the end point from the Viterbi algorithm has the highest LL
score. The true speaker’s experiment is similar to the appli-
cationsin SID, silence/voice segmentation, etc. becausethe
two GMM’s are known. In which, 97.28% of the detected
end-points are within one frame difference.

4. DISCUSSIONSAND CONCLUSIONS

The proposed decoding a gorithm has more advantages than
what we can show from the above experiment. For exam-

ple, in verbal information verification [8], an utterance level
decision score is a combination of a sequence of subword
scores. By applying the sequential agorithm, the subword
scores can be obtained and evaluated with minimal time
delay. Therefore, an impostor’s utterance might be rejected
beforethe decoding processreachesthe end of the utterance.
In conclusions, the fast, sequential decoding algorithm
proposed in [1] was evaluated on a fixed-phrase SV system
using a large database. The algorithm is based on a se-
guentia detection schemewhichis asymptotically optimum
and is consistent with the definition of Ieft-to-right HMM.
The experimental results show that the proposed algorithm
can provide acceptable EER’s while the decoding speech is
about 7 to 10 timesfaster than the Viterbi algorithm. There-
fore, it hasthe potential to reducethe system cost to afactor
of 7 to 10. The proposed algorithm can also be applied to
SID, voice/silence detection, and many other applications.
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