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ABSTRACT

A modified linear discriminant analysis technique for
speaker verification, referred to here as normalized dis-
criminant analysis (NDA), is presented. Using this
technique it is possible to design an efficient linear clas-
sifier with very limited training data and to generate
normalized discriminant scores with comparable mag-
nitudes for different classifiers. The NDA technique is
applied to a classifier for speaker verification based on
speaker specific information obtained when utterances
are processed with speaker independent models. In
experiments conducted on a network based telephone
database, the NDA technique provides an equal-error
rate of 6.13% while the classifier using Fisher linear dis-
criminant analysis has an equal-error rate of 18.18%.
Furthermore, when the NDA combined with HMM ap-
proach in a hybrid speaker verification system, the rate
was reduced from 5.30% (HMM with cohort normaliza-
tion) to 4.32%.

1. INTRODUCTION

A text dependent, connected digit, speaker verification
system often consists of different classifiers for differ-
ent words for each speaker. Two kinds of problems
occur when linear discriminant analysis (LDA) is used
to design these classifiers: the amount of training data
is usually small, and the discriminant scores obtained
from different classifiers are scaled differently so that it
is hard to compare and combine them. A normalized
discriminant analysis technique (NDA) is presented in
this paper to address these problems.

NDA is applied to design a hybrid speaker veri-
fication (HSV) system. As reported by Setlur ef al
[1], the system combines two types of word models or
classifiers (we use the term classifier when discriminant
analysis is used). The first type of classifier used is a
speaker dependent, continuous density, Gaussian mix-
ture Hidden Markov Model (HMM). This representa-
tion has been shown to provide good performance for
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connected digit password speaker verification [2]. The
second type of classifier is based on speaker specific
information that can be obtained when password ut-
terances are processed with speaker independent (SI)
Gaussian mixture HMM’s. The mixture components
of a speaker independent Gaussian mixture HMM are
found by clustering training data from a wide variety
of speakers and recording conditions. For a particular
state of a particular word, each such component is rep-
resentative of some subset of the training data. When
a test utterance is processed, the score for each test
vector is calculated using a weighted sum of mixture
component likelihoods. Because of the way the mixture
component parameters are trained, it is reasonable to
expect that each test speaker will have different char-
acteristic distributions of likelihood scores across these
components. The second type of classifier is based on
these characteristic mixture component likelihood dis-
tributions obtained over training utterances for each
speaker.

HMM utterance DA utterance
scores scores
HMM scores DA word-level
for cohort classification
HMM scores DA feature
for test speaker extraction

Figure 1: The structure of a hybrid speaker verification

(HSV) system.

Although the second type of speaker classifier yields
significantly lower performance than the first type, it
has been shown in [1] that, when combined, the two



representations yield significantly improved verification
performance over either one by itself. The features
which distinguish this study from Setlur et al [1] are
in two areas. First, NDA is used instead of Fisher lin-
ear discriminant analysis; second, verification is carried
out on a database recorded over the long-distance tele-
phone network under a variety of recording and channel
conditions; third, only small amounts of training data
are available per speaker.

The HSV system as reported in [1] is shown in Fig-
ure 1. The HSV system consists of three modules: a
Type 1, HMM classifier, a Type 2, discriminant anal-
ysis classifier; and a data fusion layer. We note that
an HSV system could include more classifiers as long
as each individual classifier can provide independent
information.

2. NORMALIZED DISCRIMINANT
ANALYSIS

Word-level discrimination between a true speaker and
impostors is a two-class classification problem. Using
LDA, a weight vector w, is found, such that the pro-
jected data from the true speaker and impostors is max-
imally separated. In brief, for two-class LDA, w can
be solved directly as

w = Sy (mr — my) (1)

where mp and mj; are the sample means of the two
classes, true speaker and impostors, and Sy, is usually

defined as

Z (x—mT)(x—mT)t—l— Z (x—mj)(x—mj)t,
xeXr xeX;
(2)

where X7 and X; are the data matrices of a true
speaker and impostors. Sy must be non-singular. Each
row in the matrices represents one training data vector
X. More details on LDA can be found in [3].

However, in practical speaker verification applica-
tions , there are usually only a few training vectors for
each true speaker (for example, there are only 5 vectors
available in our experiments). To compensate for this
lack of training data, we redefine the Sy in (2) as

Sw =

Sw = Ry +vRer + R+ 6Rey, (3)

where Rp and Rj; are the sample covariance matri-
ces from the true speaker and impostors and R¢r and
Rcr are compensating covariance matrices from an-
other available group of speakers (not used in the eval-
uation). Rcy is the sample covariance matrix of addi-
tional speakers, pooling their data. Actually, Ry and

R¢r can be combined except we may want to weight
the associated data sets differently. Recp 1s defined as

Rer = - > Ri, (4)

where R; is the sample covariance matrix of Speaker ¢
in the other group, and 75 is the total number of speak-
ers in the group. v and § are weight factors determined
experimentally.

An LDA score p of a data vector x is obtained by
projecting x onto a weight vector w, p = w'x. To
make the scores comparable across different words and
different speakers, we use the following normalization.

p=aw'x+ [ (5)
Wherea:%,[)’:— —%,andd:,uT—,uI. The

pr and py are the means of projected data from true
speaker and impostors. p is the NDA score.

3. APPLYING NDA IN THE HYBRID
SPEAKER-VERIFICATION SYSTEM

NDA can be used to design Type 2 classifiers for speaker
verification. The classifiers can be used separately or
as a module in the HSV system [1].

3.1. Training of the NDA System
3.1.1. Feature FExtraction

As described earlier, the Type 2 classifier features are
determined from speaker-independent (ST) HMM’s. Each
training or test utterance is first segmented into words
and states. As shown in Figure 2, we use the aver-
aged outputs of the Gaussian components on the HMM
states as one fixed-length feature vector for the NDA
training. The elements of the feature vector are defined
as follows.

T.
1 J
Zim = 7 ) _log(N (01, ptjm, Rjm)),

7 ¢=1
j=1,.,J;m=1,.., M. (6)

where 0; is the cepstral feature vector at time frame
t, pjm and R;,, are the mean and covariance of the
mth mixture component for state j, M; is the total
number of mixture components for state j, N(.) is a
Gaussian function, and 7} is the total number of frames
segmented into state j.

Thus, a sequence of cepstral feature vectors associ-
ated with one segmented word is mapped onto a fixed-
length feature vector. The length of the feature vector
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Figure 2: The NDA feature extraction.

is equal to the total number of Gaussian components
of the word HMM (J x M).

Feature extraction is almost identical to the tech-
nique in [1] except that the HMM mixture weights are
omitted since they are absorbed in the NDA calcula-
tion.

3.1.2. Word and Utterance Level Verifications

The structure of the word and utterance verification
for one speaker is shown in Figure 3. There is an NDA
classifier for each word.

NDA for
Word "1" Word "2" .| Word"oh"
vs. al others vs. &l others vs. @l others

2

of Word "1" of Word "2" of Word "11"

NDA for NDA for

Figure 3: The Type 2 classifier (NDA system) for one
speaker.

An utterance score Sypa(0) is a weighted sum of
NDA scores of all words in the utterance.

L
1 .
Snpa(0O) = I E ugpr;, ki €{1,., 11} (7)
im1

where L is the length of the utterance O (the total
number of words in the utterance), pp, is the NDA
score for the ith word. Equation (7) specifies a linear
node with associated weight vectors uy, that can be

determined by optimal data fusion [4] to equalize the
performance across words if sufficient training data is
available. Otherwise, we can just use up, = 1.

3.2. Training of the HMM System

For the Type 1 classifier, the HMM scores are calcu-
lated from speaker dependent (SD) HMM models. Co-
hort normalization is applied by selecting 5 scores from
a group of speakers not in the evaluation group. Cep-
stral mean normalization is applied in both the HMM
and NDA classifiers.

3.3. The Training of the Data Fusion Layer

The final decision on a given utterance O is made based
on a score S which is calculated by combining the NDA
score Sypa(0) and HMM score Sgarar(O).

S =v1Snpa(0O) + vaSrymm (0O) (8)

where vy and vy are weight values trained by LDA in
the same way that w in (1) and (2) is determined where
X7, my and Xy, my are replaced by the HMM and
NDA scores and associated means. The scores are ob-
tained from a group of speakers not used in the eval-
uation. This is a speaker independent output node of
the HSV system.

4. SPEAKER VERIFICATION
EXPERIMENTS

4.1. Experimental Database

The database consists of approximately 6000 connected
digit utterances recorded over dialed-up telephone lines.
The vocabulary includes 11 words. These are the dig-
its “0” through “9” plus “oh”. The database is parti-
tioned into 4 subsets as shown in Table 1. There are
43 speakers in the Roster A, and 42 in Roster B. For
each speaker, there are 11 5-digit utterances designated
for training recorded in a single session from a single
channel in A; and B;. These utterances are designed
to have each digit appear 5 times in different contexts.
Each speaker has a group of test utterances in A4,, and
B,,. These utterances are recorded over a series of
sessions with a variety of handsets and channels. The
test utterances in A, and B,, are either fixed 9-digit
utterances or randomly selected 4-digit utterances.
An ST HMM-based digit recognizer [2] is used to
segment each utterance into words (digits), and to gen-
erate raw feature vectors. In the digit recognizer, 10th
order autocorrelation vectors are analyzed over a 45
ms window shifted every 15 ms through the utterance.
Each set of autocorrelation coefficients is converted to



Table 1: Segmentation of the Database
Roster A Roster B

Training A B,
utterances
Test Am B,
utterances

a set of 12 cepstral coefficients from linear predictive
coding (LPC) coefficients. These cepstral coefficients
are further augmented by a set of 12 delta cepstral
coefficients calculated over a 5-frame window of cep-
stral coefficients. Each “raw” data vector has 24 ele-
ments consisting of the 12 cepstral coefficients and the
12 delta cepstral coefficients [2].

4.2. NDA System Results

Experiments were conducted first to test the NDA clas-
sifier. The SIHMM’s used to obtain NDA features as in
(6) were trained from a distinct database of connected
digit utterances. These HMM’s have 6 states for words
“0” through “9” and 5 states for word “o”. Each state
has 16 Gaussian components. So, for a 6 state HMM,
the NDA features have 6 x 16 = 96 elements. For each
true speaker in Roster A, Ry in (3) was calculated us-
ing utterances from A;; Ry was obtained from B, Ror
from both By and B,,, and R¢y from B,,. The vy and
6 parameters are not very sensitive for these data sets.
To calculate (7), we use u, = 1 due to a lack of training
data.

The results in terms of averaged individual equal-
error rates are listed in Table 2. An equal-error rate
of 6.13% was obtained with NDA using both score
normalization (5) and pooled covariance matrices (3).
With only score normalization (5) the equal-error rate
is 10.12%. Without score normalization and compen-
sating covariance matrices (as in [1]), the equal-error
rate was 18.18%.

Table 2: Results on Discriminant Analysis

Algorithms Scores Cov. Eq-Er

Matrices %
NDA Normalized Pooled 6.13
NDA Normalized | Unpooled | 10.12
LDA Unnormalized | Unpooled | 18.18
(asin [1])

1,514 true speaker utterances
23,730 impostor utterances

4.3. Hybrid Speaker-Verification System Results

For the Type 1 classifier, SD HMM’s were trained us-
ing the utterances in A;. Five cohort models were con-
structed from utterances in Roster B. The utterances
in A, were used for testing. The Sgarar scores were
obtained from the experiments in [2]. The NDA scores
were obtained from the current experiments. To ob-
tain the common weight values v; and vy in (8) for
all speakers, both Type 1 and Type 2 classifiers were
trained using the data set B;. Then v; and vy are
formed by LDA using the output scores from the data
set By,. The major results are listed in Table 3.

Table 3: Major Results

Equal-error rates (%)
Systems Mean Median
HSV with NDA | 4.32 3.14
HMM-cohort 5.30 4.35
HMM 9.41 7.42
NDA 8.68 8.15

1,514 true speaker utterances
11,620 impostor utterances

With respect to storage requirements, the HMM
classifier needs 51.56 Kb space per speaker for model
parameters. The NDA classifier needs 4.12 Kb stor-
age space per speaker, so the HSV system needs only
slightly more storage than the HMM system.
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