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ABSTRACT

An auditory-based feature extraction algorithm is presented. The
feature is based on a recently published time-frequency transform
plus a set of modules to simulate the signal processing functions in
the cochlea. The feature is applied to a speaker identification task
to address the acoustic mismatch problem between training and test-
ing. Usually, the performances of acoustic models trained in clean
speech drop significantly when tested on noisy speech. The proposed
feature has shown strong robustness in the mismatched situation.
As shown in our experiments, in a speaker identification task, both
MEFCC and the proposed feature have near perfect performances in a
clean testing condition, but when the SNR of input signal drops to 6
dB, the average accuracy of the MFCC feature is only 41.2%, while
the proposed feature still achieves an average accuracy of 88.3%.

Index Terms— Speech feature extraction, auditory-based fea-
ture, robust speaker recognition, speaker identification, cochlea.

1. INTRODUCTION

Feature extraction is the first crucial component in automatic speech
processing.  Generally speaking, a successful front-end feature
should carry enough discriminative information for classification or
recognition, fit well with the back-end modeling, and be robust to
the changes of acoustic environments. After decades of research and
development, the maintenance of satisfactory system performances
under various operating modes remains a major problem, especially
when acoustic environments between the training and testing are
mismatched. Through a careful study, we have determined that
the imitation of the human hearing system is a promising research
direction towards improving feature robustness. To this end, we
propose an auditory-based feature extraction algorithm based on our
recently published auditory-based time-frequency transform [1, 2],
which was inspired by the traveling waves in the cochlea.

At a high level, most speech feature extraction falls into the
following two categories: modeling the human voice production or
modeling the peripheral auditory hearing. For the first approach, one
of the most popular features is a group of cepstral coefficients de-
rived from linear prediction, known as linear prediction cepstral co-
efficient (LPCC) [3]. For the second approach, there are two groups
of features, based on either the Fourier transform or the auditory
filter bank (or auditory transform). The MFCC (Mel frequency cep-
stral coefficients) [4] and RASTA-PLP [5] are the two representative
speech features that were developed in the first group. The proposed
feature belongs to the second group.
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The Fourier transform (FT) has the fixed time-frequency reso-
lution and a well-defined inverse transform. Fast algorithms exist
for both the forward transform and the inverse transform. Despite
its simplicity and efficient computation algorithms, when applied in
speech processing, the time-frequency decomposition mechanism of
the FT is different from the mechanism in the hearing system. First,
it uses fixed-length windows, which generate the pitch harmonics
in the entire speech bands. Second, its individual frequency bands
are in linear distribution, which is different from the nonlinear dis-
tribution in human cochlea. Finally, in our recent study [1, 2], we
presented that the FFT spectrogram has more noise distortion and
more computation noise than an auditory-based transform which we
recently developed; thus, it is natural to develop a new feature based
on our new auditory-based, time-frequency transform [2], to address
the above concerns in the FFT.

In auditory research, the traveling wave of the basilar membrane
(BM) in the cochlea and its impulse response have been observed
and reported in the literature, e.g. [6, 7, 8]. Moreover, the BM tun-
ing and auditory filters have also been studied in the literature, e.g.
[9, 10, 11, 12]. Many electronic and mathematic models have been
defined to simulate the traveling wave, the auditory filters, and the
frequency responses of the BM, e.g. [13, 14, 15, 16, 17]. Also, there
are models to model the entire auditory system, e.g. [18] and refer-
ences wherein.

The Gammatone filter [19] has been used as a cochlear model to
decompose speech signals into the output of a number of frequency
bands, but there is no proof to its inverse transform. To provide an
invertible auditory-based transform, Li redefined the Gammatone-
based filter bank, thus proved the inverse transform [2]. We named
it as the auditory transform (AT) which includes a pair of a forward
transform and an inverse transform. Through the forward transform,
the speech signal can be decomposed into a number of frequency
bands using a bank of cochlear filters. The frequency distribution
of the cochlear filters is similar to the one in cochlea and the im-
pulse response of the filters is similar to that of the travelling wave.
Through the inverse transform, the original speech signal can be re-
constructed from the decomposed band-pass signals. The transform
pair has been proven in theory and validated in experiments [2]. Al-
though the invert transform is not necessary in feature extraction, the
AT ensures no information loss in the forward transform; therefore,
provides a new platform for feature extraction research. In the Gam-
matone filter bank, the filter bandwidth is locked to the band central
frequency, while in the AT, the filter bandwidth can be adjusted eas-
ily based on applications.

Compared to the FFT, the new transform has flexible time-
frequency resolution and its frequency distribution can take on any
linear or nonlinear scales. It is easy to implement a distribution to be
similar to that of the Bark, Mel, or ERB scale, which is similar to the
frequency distribution of the BM. Most importantly, the proposed
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transform has significant advantages in noise robustness and are free
from the pitch harmonic distortion as plotted in [2]. Therefore, we
use AT as a new platform for feature extraction.

2. PROPOSED AUDITORY-BASE FEATURE

An illustrative block diagram of the proposed feature is shown in
Fig. 1. It consists of the following modules to conceptually replicate
the hearing system at a high level: a cochlear filter bank, hair-cell
function with variable length windows, loudness nonlinearity, and
discrete cosine transform (DCT). We name it cochlear feature cep-
stral coefficients (CFCC).

Speech | Cochlear Hair Cell /
Filter Bank Windows
ﬂ DCT Non-Linearity

Fig. 1. Diagram of the proposed feature extraction algorithm.

2.1. The Cochlear Filter Bank

The cochlear filter bank is the forward transform of the auditory
transform (AT) [2]. Let f(¢) be any square integrable function. A
transform of f () with respect to a function representing the basilar
membrane (BM) impulse response ¢ (t) is defined as:

ran = [T g0 () e

where a and b are real, both f(¢) and 4 (t) belong to L*(R), and
T(a,b) represents the traveling waves in the BM. The above equa-
tion can also be written as:

@) = [ e dt @
where . b
ap(t) :\/ﬁ < ;t) . (3)

Factor a is a scale or dilation variable. By changing a, we can shift
the central frequency of an impulse response function. Factor b is
a time shift or translation variable. For a given value of a, factor
b shifts the function t,,0(¢) by an amount b along the time axis.
Note that 1 /\/m is an energy normalizing factor. It ensures that the
energy stays the same for all a and b; therefore, we have:
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The cochlear filter is defined as:

s = (21 [ (5]
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where o > 0 and 8 > 0, u(t) is the unit step function, i.e. u(t) =1
for ¢ > 0 and 0 otherwise. The value of # should be selected such
that (6) is satisfied:

[ Tty dt = 0. ®)

This is required by the transform theory [2]. The value of a can be
determined by the current filter central frequency, f., and the lowest
central frequency, fr,, in the cochlear filter bank:

a:fL/fc~ (7)

Since we construct ¢, (t) with the lowest frequency along the time
axis, the value of a isin 0 < a < 1. If we stretch 1, the value of
aisin a > 1. The frequency distribution of the cochlear filter can
be in the form of linear or nonlinear scales such as ERB (equivalent
rectangular bandwidth) [15], Bark [20], mel scale [4], log, etc. Note
that the values of the a need to be pre-calculated for all required
central frequency of the cochlear filter.

2.2. Other Operations

The inner hair cells act to transducer mechanical movements into
neural activities. When the BM moves up and down, a shearing mo-
tion is created between the BM and the tectorial membrane [21].
It causes the displacement of the hairs at the tops of the hair cells
which generates the neural signals; however, the hair cells only gen-
erate the neural signals in one direction of the BM movement. When
the BM moves in the opposite direction, there is neither excitation
nor neuron output. Our computation of the hair cell function is as
follows:

h(a,b) = T(a,b)*; Va,b, ®)
where T'(a,b) is the filter bank output. Here, we assume that all
other detailed functions in the outer ear, middle ear, and the control
of auditory system to the cochlea have been ignored or have been
included in the auditory filter responses.

In the next step, the hair cell output for each band is converted
into a representation of nerve spike count density in a duration asso-
ciated with the current band central frequency. At the concept level,
we use the following equation:

l+d—1
SG.i)= 5 S hGb), £=1L2L- - Yij )
b=t

where d = [3.57;,20ms] is the window length, 7; is the period of
the ith band, and I.. = 10 ms is the window shift duration. We
empirically set the computations and the parameters and they may
need to be adjusted for different datasets. If we plot S as a 2-D
image, it is a kind of spectrogram but much more robust than FFT
spectrogram because it has less distortions caused by background
noise, less computational noise, and free from pitch harmonics as
shown in [2]. Instead of using a fixed length window, we are using a
variable length window for different frequency bands. The higher the
frequency, the shorter the window. This avoids the high frequency
information being smoothed out by long window duration.

Furthermore, we apply the scales of loudness function suggested
by Stevens [22, 23] to the hair cell output as:

y(i,j) = S(, §)"°. (10)

This operation implements cubic root nonlinearity from the physical
energy to the perceived loudness. In the last step, the discrete cosine
transform (DCT) is applied to decorrelate the feature dimensions and
generates the cochlear filter cepstral coefficients (CFCC) as our new
auditory-based speech feature.



3. EXPERIMENTS

3.1. Database and Experimental Setup

The Speech Separation Challenge database contains speech recorded
from a closed-set of 34 speakers (18 male and 16 female speakers).
All speech files are single-channel data sampled at 25 kHz and all
material is end-pointed (i.e. there is little or no initial or final si-
lence) [25]. The training data was recorded under clean conditions.
The testing sets were obtained by mixing clean testing utterances
with white noises at different SNR levels; in total there are five test-
ing conditions provided in the database, i.e. noisy speech at -12 dB,
-6 dB, 0 dB, and 6 dB SNR, and clean speech. We find this database
ideal for the study of noise robustness when training and testing con-
ditions do not match. In particular, since all the noisy testing data is
generated from the same speech with only the noise level changing,
this largely reduces the performance fluctuations due to variations
other than noise types and mixing levels.

In our experiments, speaker models were first trained using the
clean training set and then tested on noisy speech at four SNR levels.
We created three disjoint subsets from the database as the training
set, development set, and testing set as summarized in Table 1. Note
that the training set consists of only clean speech; both the develop-
ment set and the testing set consist of clean speech and noisy speech
at four different SNR levels. Note that we mainly focused on O dB
and 6 dB conditions in our feature analysis since under -6 dB the
performance of all features are closed to random chances.

Table 1. Summary of the Training, Development, and Testing Sets

Data Set | # of Spks. | # of Utters / Spk. | Dur. (sec) / Spk.
Training 34 20 36.8s
Develop. 34 10 18.3s
Testing 34 10 ~ 20 29.6s

3.2. The Baseline System

Our baseline system uses the standard MFCC front-end feature and
Gaussian Mixture Models (GMMs). Twenty-one-dimension MFCC
features (cO ~ c20) were extracted from the speech audio based
on 25 ms window with a frame-rate of 10 ms;the frequency anal-
ysis range was set to be 50 Hz ~ 8000 Hz. The Oth component of
the MFCC feature corresponding to the energy was discarded and
the final front-end feature of the baseline system was 20-dimension
MFCCs (¢l ~ ¢20). Note that the delta and double delta of the
MEFCCs were not used here since they were not found to be helpful
in discerning between speakers in our experiments. We also found
cepstrum mean subtraction was not helpful; therefore it was not used
in our baseline system.

The back-end of the baseline system is the standard Gaussian
Mixture Models (GMMs) trained using the Maximum Likelihood
Estimation (MLE). Let M; represent the GMM model for the i-th
speaker, and ¢ be the index for speakers. During testing, the testing
utterances u match against all hypothesized speaker models (M;),
and the speaker identification decision (.J) is made by:

J=argmiax210gp(uk|Mi), (11)
&

where uy, is the k-th frame of utterance w and p(-|M;) is the proba-
bility density function. Thirty-two Gaussian mixtures were used in
the speaker GMM models. To obtain fair comparison of the different
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front-end features, only the front-end feature extraction was varied
and the configuration of the back-end of the system remained the
same in all the experiments throughout this paper.

For comparison, we also implemented the Gammatone filter
cepstral coefficient (GFCC) feature following the descriptions in
[24], where a downsampling procedure was applied to the output
of the Gammatone filter bank followed by a cubic root function
applied to the absolute values of the downsampling output. An exact
implementation following the description in [24] did not give us
reasonable experimental results; therefore, we replaced the down-
sampling procedure in [24] by computing an average of the absolute
values on the Gammatone filter bank output using a 20 ms window
shifted every 10 ms, followed by a cubic root function and DCT.
This procedure is different from the original GFCC, so we name it as
modified GFCC feature (MGFCC). The MGFCC can be considered
as an additional result to support the concept of auditory-based filter
bank as an alternative to FFT.

3.3. Compare MFCC, MGFCC, and Proposed CFCC Features

To better understand and optimize the various components of CFCC
feature extraction, we delved into each module in the CFCC feature
extraction and experimented with its alternative variations using a
separate development set as described in Section 3.1. The goal was
to find out the effects of each component to the overall performance
and ultimately optimize the feature extraction.

Based on the our analytic study, the details on the CFCC feature
extraction can be summarized as follows: First, the speech audio
file is passed through the band-pass filter bank. The filter width pa-
rameter 3 was set to 0.035. The Bark scale is used for the filter
bank distribution and equal loudness weighting is applied at differ-
ent frequency bands. Second, the travelling waves generated from
the cochlear filters are windowed and averaged by the hair cell func-
tion. The window length is 3.5 epochs of the band central frequency
or 20 ms, whichever is the shortest. Third, a cubic nonlinearity is
applied. Finally, since most back-end systems adopt diagonal Gaus-
sian, discrete cosine transform (DCT) is used to decorrelate the fea-
tures. The Oth component, corresponding to the energy, is removed
from the DCT output.

Table 2 summarizes the speaker identification accuracy of the
optimized CFCC feature in comparison with MGFCC and MFCC
tested on the development set.

Table 2. Comparison of MFCC, MGFCC, and Proposed CFCC Fea-
tures Tested on the Development Set.

Testing SNR -6 dB 0dB 6 dB
MFCC 6.8% | 159% | 42.1%
MGFCC 9.1% | 45.0% | 88.8%
CFCC (Proposed) | 12.6% | 57.9% | 90.3%

Using the optimized CFCC feature extraction based on the de-
velopment set, we conduct speaker identification experiments on the
testing set with the results depicted in Fig. 2. As we can see from
Fig. 2, in clean testing condition, the CFCC feature generates com-
parable near-perfect results to MFCC. As white noises with increas-
ing intensities are added to the clean testing data, the performances
of the CFCC are significantly better than the MGFCC and MFCCs
performances. For example, when the SNR of the testing condition
drops to 6dB, the accuracy of the MFCC system drops to 41.2%. In
comparison, the parallel system using the proposed CFCC feature
still achieves 88.3% accuracy, which is more than two times better



than the MFCC feature. The MGFCC feature has an accuracy of
85.1%, which is better than the MFCC feature, but not as good as
the proposed CFCC feature. The CFCC performance in the testing
data set is similar to its performance in the development set. Overall,
we see that the proposed CFCC feature outperforms both the widely
used MFCC feature and another related auditory-based MGFCC fea-
ture in this speech identification task.

1

—&— CFCC(White Noise) L=
0.91 — < ~MGFCC(White Noise) P s
—x—-MFCC(White Noise) a-" /

0.8

0.7

o
)

Accuracy
o
a

0.3

0.2

0.1

| |
0dB 6dB
Test Conditions

0
-6dB Clean

Fig. 2. Comparison of MFCC, MGFCC, and the proposed CFCC
features tested on noisy speech with white noise.

4. CONCLUSIONS

A new auditory-based feature for robust speaker identification was
presented in this paper. The research was motivated by the studies
of the signal-processing functions in the human peripheral auditory
system. The feature was developed based on a recently presented
invertible time-frequency transform plus several components moti-
vated by the human hearing system. Our experiments suggest that
under mismatched acoustic conditions, the new feature consistently
performs better than both the MFCC and MGFCC features.

The auditory-based transform provides a new platform for robust
feature research. In the future, we plan to extend our study of the
CFCC feature to other speech application tasks, including automatic
speech recognition, accent recognition, and other applications.
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