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ABSTRACT

In this paper, the relations among several discriminative train-
ing objectives for speech and speaker recognition, language
processing, and dynamic pattern recognition are derived and
discovered through theoretical analysis. Those objectives
are theminimum classification error(MCE), maximum mu-
tual information(MMI), minimum error rate(MER), and a
recently proposedgeneralized minimum error rate(GMER)
objectives. The results show that all the objectives are re-
lated to thea posterioriprobability and error rates, and the
MCE and GMER objectives are more general and flexible
than the MMI and MER objectives. These results can help
in understanding the discriminative objectives, in improving
recognition performances, and in discovering new training
algorithms jointly with objectives.

1. INTRODUCTION

It has been reported that the discriminative training tech-
niques provide significant improvements in recognition per-
formance compared to the traditional maximum likelihood
(ML) objective in speech and speaker recognition as well
as language processing. Those discriminative objectives in-
clude theminimum classification error(MCE) [1], maxi-
mum mutual information(MMI) [2], minimum error rate
(MER) [8], and a recently proposedgeneralized minimum
error rate (GMER) [3, 4] objectives, as well as others.

Among those objectives, the MCE and MMI have been
used for years and have both shown good performances over
the ML objective. Consequentially, some research have been
conducted to compare the performances through experiments
or some degree of theoretical analysis (e.g. [5, 6, 7]); how-
ever, the experimental comparisons are limited to particular
tasks and the results are not general enough to help us un-
derstand the detailed mechanisms; on the other hand, the
previous theoretical analyses are not conclusive or adequate
enough to show the relations among those objectives. In this
paper, we intend to derive and discover the relations among
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the four objectives theoretically and conclusively without
any bias to any particular tasks. The theoretical results are
further validated by experimental results.

In the following, thea posteriori probability will be
used as the tool to facilitate the comparisons. We will first
review the relation between error rates and thea posteriori
probability, and then derive the relations between each of
the discriminative objectives and thea posterioriprobabil-
ity; furthermore, we will establish the relations among the
different objectives.

Error Rates vs. the a Posteriori Probability: In anM -
class classification problem, we are asked to make a deci-
sion to identify a sequence of observations,x, as a mem-
ber of a class, say,Ci. The true identity ofx, sayCj , is
unknown, except in the design or training phase in which
observations of known identity are used as reference for pa-
rameter optimization. We denote eventαi as the action of
identifying an observation as classCi. The decision is cor-
rect if i = j; otherwise, it is incorrect. It is natural to seek a
decision rule that minimizes the probability of error, or em-
pirically, the error rate, which entails a zero-one loss func-
tion:

L(αi|Cj) =
{

0 i = j i, j = 1, ..., M
1 i 6= j.

(1)

It assigns no loss to a correct decision and assigns a unit
loss to an error. The probabilistic risk ofαi corresponding
to this loss function is

R(αi|x) =
M∑

j=1

L(αi|Cj)P (Cj |x)

=
∑

j 6=i

P (Cj |x) = 1− P (Ci|x) (2)

whereP (Ci|x) is thea posterioriprobability thatx belongs
to Ci. Thus, the zero-one loss function links the error rates
to thea posterioriprobability. To minimize the probabil-
ity of error, one should therefore maximize thea posteriori
probabilityP (Ci|x). This is the basis of Bayes’ maximum
a posteriori (MAP) decision theory and is also referred to
asminimum error rate(MER) [8] in an ideal setup.



We note that thea posterioriprobabilityP (Ci|x) is of-
ten modeled asPλi

(Ci|x), a function defined by a set of
parametersλi. Since the parameter setλi has a one-to-one
correspondence withCi, we write Pλi

(Ci|x) = P (λi|x)
and other similar expressions without ambiguity.

If we consider allM classes and all data samples, an
objective for MER can be defined as:

max J(Λ) =
1
N

M∑

k=1

Nk∑

i=1

P (λk|xk,i) (3)

whereNk is the total number of training data of classk,
N =

∑M
k=1 Nk, andxk,i is theith feature vector of classk.

Λ is a set of model parameters,Λ = {λk}M
k=1.

Neural Networks vs. the a Posteriori Probability: We
note that it has shown that multilayer neural networks trained
by backpropagation on a sum-squared error objective can
approximate the truea posterioriprobability in a least-square
sense [8]. In this paper, we focus on the objectives that have
been applied to speech and speaker recognition or other dy-
namic pattern recognition problems.

2. MINIMUM CLASSIFICATION ERROR VS. THE
A POSTERIORI PROBABILITY

The minimum classification error (MCE) objective was de-
rived through a systematic analysis on classification errors.
It introduced a misclassification measure to embed the de-
cision process in the overall minimum classification error
formulation. During the derivation, it was also considered
that the misclassification measure is continuous with respect
to the classifier parameters. The empirical average cost as
the typical objective in the MCE algorithm was defined as
[1]:

min L(Λ) =
1
N

N∑

i=1

M∑

k=1

`k(dk(xi); Λ)1(xi ∈ Ck). (4)

whereM andN are the total numbers of classes and train-
ing data, andΛ = {λk}M

k=1. It can be rewritten as:

min L(Λ) =
1
N

M∑

k=1

Nk∑

i=1

`k(dk(xk,i); Λ) (5)

whereNk is the total number of training data of classk,
N =

∑M
k=1 Nk, andxk,i is theith feature vector of class

k. `k is a loss function and a sigmoid function is often used
for it:

`k(dk) =
1

1 + e−ζdk+α
, ζ > 0 (6)

wheredk is a class misclassification measure defined as [9]:

dk(x) = −gk(x; Λ)+log


 1

M − 1

∑

j 6=k

exp[ηgj(x; Λ)]




1/η

(7)
wherex = xk,i. When functiong(.) in (7) is a logarithm of
probability as used in many applications, the class misclas-
sification measure in (7) can be rewritten as:

dk(x) = − log p(x|λk) + log


 1

M − 1

∑

j 6=k

p(x|λj)η




1/η

.

(8)
Whenη = 1, we have

dk(x) = − log
p(x|λk)∑

j 6=k
1

M−1p(x|λj)
. (9)

It can be further presented as:

dk(x) = − log
p(x|λk)Pk∑
j 6=k p(x|λj)Pj

(10)

wherePk = 1 andPj = 1
M−1 , and they are similar to thea

priori probability if we conduct a normalization.
To facilitate our further comparison, we convert the min-

imization problem to a maximization problem. Let

d̃k(x) = −dk(x) = log
p(x|λk)Pk∑

j,j 6=k p(x|λj)Pj
, (11)

and take it into the sigmoid function in (6). Assumingζ = 1
andα = 0, we have

`k(d̃k) =
1

1 + e−d̃k

(12)

=
p(x|λk)Pk

p(x|λk)Pk +
∑

j 6=k p(x|λj)Pj
(13)

=
p(x|λk)Pk∑M
j=1 p(x|λj)Pj

. (14)

Thus, the objective in (5) is simplified to:

max L̃(Λ) =
1
N

M∑

k=1

Nk∑

i=1

p(xk,i|λk)Pk∑M
j=1 p(xk,i|λj)Pj

(15)

=
1
N

M∑

k=1

Nk∑

i=1

P (λk|xk,i). (16)

This demonstrates that the MCE objective can be simpli-
fied to MER as defined in (3) and linked to thea posteriori



probability if we make the following assumptions:

Pk = 1 (17)

Pj =
1

M − 1
(18)

η = 1 (19)

ζ = 1 (20)

α = 0. (21)

Among the parameters,Pk = 1 andPj ≤ 1 imply that the
MCE objective weighs the true class higher or equal to the
competing classes. The parameterη plays a role of Holder
norm in (7). By changingη, the weights between the true
class and competing classes can be further adjusted. The
rest of the parameters,ζ andα, are related to the sigmoid
function. α represents the shift of the sigmoid function.
Since other parameters can play a similar role,α is usually
set to zero.ζ is related to the slope of the sigmoid function.
For different tasks and data distributions, different values
of ζ can be selected to achieve the best performance.ζ is
one of the most important parameters in the MCE objective,
and it makes the MCE objective flexible and adjustable to
different tasks and data distributions.

3. MAXIMUM MUTUAL INFORMATION VS.
MINIMUM CLASSIFICATION ERROR

The objective ofmaximum mutual information(MMI) was
defined in [2] as:

I(k) = log
p(xk,i|λk)Pk∑M
j=1 p(xk,i|λj)Pj

. (22)

If we consider allM models and all data as in the above
discussions, the complete objective for MMI training is:

max I(Λ) =
M∑

k=1

Nk∑

i=1

log
p(xk,i|λk)Pk∑M
j=1 p(xk,i|λj)Pj

(23)

=
M∑

k=1

Nk∑

i=1

log P (λk|xk,i). (24)

By comparing (16) and (24), we observe that the difference
between the simplified version of the MCE objective and
the MMI objective is primarily in the logarithm. Since the
logarithm is a monotonically increasing function andN is a
constant, a procedure to optimize (24) is equivalent to opti-
mize (16); therefore, the MMI objective in (24) is equivalent
to:

max Ĩ(Λ) =
1
N

M∑

k=1

Nk∑

i=1

P (λk|xk,i) (25)

which equals the simplified version of MCE objective in
(16) or the MER objective in (3).

4. GENERALIZED MINIMUM ERROR RATE VS.
OTHER OBJECTIVES

In order to derive a set of close-form formulas for fast pa-
rameter estimation, we defined the generalized minimum er-
ror rate (GMER) objective as [3, 4]:

max J̃(Λ) =
1
M

M∑
m=1

Nm∑
n=1

`(dm,n) (26)

where`(dm,n) = 1
1+e−ζdm,n

is a sigmoid function, and

dm,n = log p(xm,n|λm)Pm − Lm log
∑

j 6=m

p(xm,n|λj)Pj ,

(27)
where0 < Lm ≤ 1 is a weighting scalar. Intuitively,Lm

represents the weighting between true classm and compet-
ing classesj 6= m. WhenLm < 1, it means that true class
m is more important than the competing classes. When
Lm = 1, it means the true class and competing classes
are equally important. The exact value ofLm can be de-
termined during estimation based on the constraint that es-
timated covariance matrixes must be positive definite.

The sigmoid function plays a role similar to its role in
the MCE objective. It actually provides different weights to
different training data. For that data that is hardly ambigu-
ous in its classification, the weight is close to 0 (i.e., deci-
sively wrong) or 1 (i.e., decisively correct); for the data near
the classification boundary, the weighting is in-between. The
slope of the sigmoid function is controlled by the parame-
ter ζ > 0. Its value can be adjusted based upon the data
distributions in specific tasks.

WhenLm = 1 andζ = 1, we have that thẽJ in (26)
equals toJ in (3), and the GMER objective in (26) is simpli-
fied to the MMI or MER objectives. The GMER objective
is equal to the MCE objective if we have:Lm = 1, Pk = 1,
andPj = 1

M−1 on the GMER objective, and haveη = 1
andα = 0 on the MCE objective.

The new GMER objective is more general and flexi-
ble than both MMI and MER objectives. It also remtains
the most important parametersζ from the MCE objective.
The weighting parameterη in MCE was replaced byLm in
the GMER objective. The most important factor is that the
GMER objective is simpler than MCE; thus, we can derive
a new set of closed-form formulas for fast parameter esti-
mation for discriminative training [3, 4].

5. EXPERIMENTAL COMPARISONS

The results from the above theoretical analysis are consis-
tent with the experimental results reported from different
research sites.

In speaker verification, ML (maximum likelihood), MMI,
and MCE objectives were compared using the NIST 1996



Table 1. COMPARISONS ONTRAINING ALGORITHMS
Objec- Algorithms Learning Relation to
tives Parameters Post. Prob.
ML Closed form/EM None Not related
MMI Closed form D Same
MCE Gradient Learning Extended

descent/GPD rates
GMER Closed form None Extended

evaluation dataset by Ma,et al. [7]. There are 21 male tar-
get speakers and 204 male impostors. The reported relative
equal-error-rate reductions compared to the ML objective
are 3.2% and 7.0% for MMI and MCE, respectively.

In speech recognition, MLE, MMI, and MCE objec-
tives were compared using a common database by Reichl
and Ruske [5]. It was found that both MMI and MCE ob-
jectives can have speech recognition performance improve-
ments over the ML objective. The absolute error-rate reduc-
tion in the MMI objective is 2.5% versus 5.3% in the MCE
objective.

In speaker identification, we compared the ML and GMER
objectives using an 11-speaker group from the NIST 2000
dataset. For the testing durations of 1, 5, and 10 seconds, the
ML objective had error rates of 31.4%, 6.59%, and 1.39%
while the GMER objective has error rates of 26.81%, 2.21%,
and 0.00%. The relative error rate reductions are 14.7%,
66.5%, and 100%, respectively. For the best results, the
weighting scalarsLm were determined by the algorithm
(Lm 6= 1.0), and the slope of sigmoid function isζ = 0.8.
Based on our above analysis, this implies that the GMER
objective also outperforms the MMI and MER objectives.

The above experimental results showed that by adjusting
the additional parameters, the MCE and GMER can provide
better performances than others.

6. DISCUSSIONS AND CONCLUSIONS

For pattern recognition or classification, the objectives and
optimization methods for parameter estimation are related
to each other, and they both play important roles in solving
real-world problems, in terms of recognition accuracy and
training speed. We summarize the comparisons in Table 1.

Regarding optimization methods, in general, closed-form
formulas are more efficient than a gradient-descent kind of
approach. However, not every objective has the closed-form
formulas. When an objective is complicated, such as the
MCE objective, it has less of a chance to derive closed-
form formulas. For the MMI objective, a closed-form pa-
rameter estimation algorithm was derived; however, there
is a constantD in the algorithm and the value of the con-
stant needs to be pre-determined for parameter estimation.
Like the learning rate in gradient-descent methods, it is dif-

ficult to determine the value ofD as reported in literature.
The GMER algorithm is developed under our belief that
for the best performances, in terms of recognition accuracy
and training speed, the objective and optimization method
should be developed jointly. The GMERs recognition accu-
racy is similar to MCE while the training speech is close to
the EM algorithm used in the ML estimation.

It has been argued that it is not intuitive how the MMI
objective relates to error rates. From the above discussions,
the answer is straightforward because we have linked the
MMI objective to thea posterioriprobability and error rates.
If we want to further investigate the differences between the
MCE objective in (5) and MMI objectives in (24), the dif-
ferences are mainly in the parameter set listed from (17) to
(21). In theory, those parameters provide the flexibility to
adjust the MCE object for different recognition tasks and
data distributions; therefore, MCE object is more general
compared to the MMI and MER objectives.

In conclusion, the theoretical analysis in this paper indi-
cates that the discriminative objectives used in speech and
speaker recognition are all related to thea posterioriproba-
bility and error rates. While the MMI is directly from thea
posterioriprobability, the MCE and GMER objectives can
be equivalent to theposteriori probability under some as-
sumptions. The results from this paper show that the MCE
and GMER objectives extend thea posterioriprobability-
based objectives, and they are more general and flexible
than the MMI objective. As validated in experiments, the
extension and flexibility can benefit real applications for dif-
ferent recognition tasks or data distributions.
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