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ABSTRACT the four objectives theoretically and conclusively without
any bias to any particular tasks. The theoretical results are

In this paper, the relations among several discriminative tralnf—urther validated by experimental results.

ing objectives for speech and speaker recognition, language In the following, thea posteriori probability will be
processing, and dynamic pattern recognition are derived and :

discovered throuah theoretical analvsis. Th biectiv used as the tool to facilitate the comparisons. We will first
scovered through theoretical analysis. 0S€ ODJECUVES o iew the relation between error rates anddhgosteriori
are theminimum classification errofMCE), maximum mu-

tual information(MMI), minimum error rate(MER), and a probability, and then derive the relations between each of

. . the discriminative objectives and tlagposterioriprobabil-
regentlly proposegeneralized minimum error r-a(é.BMER) ity; furthermore, we will establish the relations among the
objectives. The results show that all the objectives are ré- jiterent objectives
lated to thea posterioriprobability and error rates, and the Error Rates vs .the a Posteriori Probabilityn an M-
MCE and GMER objectlve_s are more general and flexible class classification problem, we are asked to make a deci-
than the MMI and MER objectives. These results can help sion to identify a sequence of observations,as a mem-
in understanding the discriminative objectives, in improving '

recoanition performances. and in discovering new trainin ber of a class, say;;. The true identity ofx, sayC}, is
gnition p . S, and in discovering new training unknown, except in the design or training phase in which
algorithms jointly with objectives.

observations of known identity are used as reference for pa-
rameter optimization. We denote eventas the action of
1. INTRODUCTION identifying an observation as cla€$. The decision is cor-
rect if i = j; otherwise, it is incorrect. It is natural to seek a
It has been reported that the discriminative training tech- decision rule that minimizes the probability of error, or em-
niques provide significant improvements in recognition per- pirically, the error rate, which entails a zero-one loss func-
formance compared to the traditional maximum likelihood tion:
(ML) objective in speech and speaker recognition as well . .
. T . . 0 i=j i,j=1,... M
as language processing. Those discriminative objectives in-  L(«;|C;) = { 1 it
clude theminimum classification erro(MCE) [1], maxi- J-
mum mutual informatiofMMI) [2], minimum error rate |t assigns no loss to a correct decision and assigns a unit
(MER) [8], and a recently proposegkneralized minimum  |oss to an error. The probabilistic risk of corresponding

)

error rate (GMER) [3, 4] objectives, as well as others. to this loss function is
Among those objectives, the MCE and MMI have been o
used for years and have both shown good performances over
A . R(ay = L(o;|C;)P(C;
the ML objective. Consequentially, some research have been (oifx) JZ_; (0l C5)P(C;x)

conducted to compare the performances through experiments _
or some degree of theoretical analysis (e.g. [5, 6, 7]); how- = ) PCilx)=1-P(Cilx) (2
ever, the experimental comparisons are limited to particular JF#i
tasks and the results are not general enough to help us UNg herep

derstand the detailed mechanisms; on the other hand, th?o C;. Thus, the zero-one loss function links the error rates

previous theoretical analyses are not conclusive or adequat?O thea posteriori probability. To minimize the probabil-
enough to show the relations among those objectives. In this

; . ) . ity of error, one should therefore maximize th@osteriori
paper, we intend to derive and discover the relations amongprobabilityP(Ci|x). This is the basis of Bayes’ maximum

Qi (Peter) Li was with Bell Labs, Lucent Technologies, Murray Hill, & po_st_eriori (MAP) decision thepry ar_1d is also referred to
NJ 07974. asminimum error ratg MER) [8] in an ideal setup.

(C;|x) is thea posterioriprobability thatx belongs




We note that the posterioriprobability P(C;|x) is of-
ten modeled a$,, (C;|x), a function defined by a set of
parameters\;. Since the parameter skf has a one-to-one
correspondence witl’;, we write Py, (C;|x) = P(\i|x)
and other similar expressions without ambiguity.

If we consider allM classes and all data samples, an
objective for MER can be defined as:

®3)

max J(A) =

| M N
— (Mg |xk.:)
N;; Kl

where Ny, is the total number of training data of claks
N = Z,ﬁil Ny, andxy, ; is theith feature vector of clags
A is a set of model parameters,= {\; }12,

Neural Networks vs. the a Posteriori ProbabilityVe

note that it has shown that multilayer neural networks trained
by backpropagation on a sum-squared error objective can

approximate the truea posterioriprobability in a least-square

whered;, is a class misclassification measure defined as [9]:

1/n

T > exping; (x; A)]

ik

di(x) = —gr(x; A)+log
)

wherex = x;, ;. When functiorg(.) in (7) is a logarithm of

probability as used in many applications, the class misclas-

sification measure in (7) can be rewritten as:

sense [8]. In this paper, we focus on the objectives that havey; an be further presented as:
been applied to speech and speaker recognition or other dy-

namic pattern recognition problems.

2. MINIMUM CLASSIFICATION ERROR VS. THE
A POSTERIORI PROBABILITY

The minimum classification error (MCE) objective was de-

1/n
di(x) = —log p(x|\x) + log 1 ZP(XI/\J')”
J#k
(8)
Whenn = 1, we have
p(x[ k)
di(x) = —log . 9)
Zj;ék ﬁp(xp‘j)
(x| Ak) Py
dp(x) = —log =———F—— (10)
( 2 PP,
whereP,, = 1 andP; = 2, and they are similar to the

priori probability if we conduct a normalization.
To facilitate our further comparison, we convert the min-

: . \ e imization problem to a maximization problem. Let
rived through a systematic analysis on classification errors.

It introduced a misclassification measure to embed the de-
cision process in the overall minimum classification error
formulation. During the derivation, it was also considered
that the misclassification measure is continuous with respect
to the classifier parameters. The empirical average cost aé

~ _ X) =10 p(X|>\k)Pk
di(x) = —dg(x) lgz(j}jﬁp(xw)a’

nd take it into the sigmoid function in (6). AssumifQig- 1

(11)

the typical objective in the MCE algorithm was defined as

[1]:

anda = 0, we have

~ 1
b(dy) = ——— 12
. k(dk) =" (12)
min L(A) = — ZZ (dr(x:); A)1(x; € Ci). (4) _ P Ak) Py 13
E=t= IR ST
whereM and N are the total numbers of classes and train- M (14)
ing data, and\ = {\;}7,. It can be rewritten as: > =1 P(X[A;) P
M N, Thus, the objective in (5) is simplified to:
mlnL N ;;Ek dk sz ) (5) ] M N X |>\ P
max L(A) = N Z Z AR (15)
where Ny, is the total number of training data of claks k=11i=1 £uj= 1p( X1l A1) Py
N = YL Ny, andxy, is theith feature vector of class M_ N
k. ¢, is a loss function and a sigmoid function is often used = = Z > P(lxe) (16)
k 1i=1

for it:

1

O (dy) = T o—Chta’

¢>0 (6)

This demonstrates that the MCE objective can be simpli-
fied to MER as defined in (3) and linked to thgosteriori



probability if we make the following assumptions: 4. GENERALIZED MINIMUM ERROR RATE VS.
OTHER OBJECTIVES

P =1 17)

P - 1 (18) In order to derive a set of close-form formulas for fast pa-
N V| rameter estimation, we defined the generalized minimum er-
n = 1 (29) ror rate (GMER) objective as [3, 4]:
¢ =1 (20) M Ne
a = 0. (21) max J(A) = - SN Udmm) (26)

m=1n=1
Among the parameters), = 1 andP; < 1 imply that the
MCE objective weighs the true class higher or equal to the
competing classes. The parameigslays a role of Holder
norm in (7). By changing;, the weights between the true ~ @m.n = 108 p(%m.n|Am) P — Lin log Z P(Xim,n | A) P
class and competing classes can be further adjusted. The g#m @27)

rest of the parameterg,and«, are related to the sigmoid . N .
) . . . : where0 < L,, < 1 is a weighting scalar. Intuitivelyl,,
function. « represents the shift of the sigmoid function. A
Since other parameters can play a similar ralés usually represents the weighting betweeq true clasand compet-
ing classeg # m. WhenL,, < 1, it means that true class

set to zero( is related to the slope of the sigmoid function. m is more important than the competing classes. When
For different tasks and data distributions, different values - mP peting e
L,, = 1, it means the true class and competing classes

of ¢ can be selected to achieve the best performands. are equally important. The exact value bf, can be de-

one of the most important parameters in the MCE objective, - . . . )
) . . : termined during estimation based on the constraint that es-
and it makes the MCE objective flexible and adjustable to . : . L -
timated covariance matrixes must be positive definite.

different tasks and data distributions. . . : L : .
The sigmoid function plays a role similar to its role in

the MCE objective. It actually provides different weights to

3. MAXIMUM MUTUAL INFORMATION VS. different training data. For that data that is hardly ambigu-

MINIMUM CLASSIFICATION ERROR ous in its classification, the weight is close to O (i.e., deci-

sively wrong) or 1 (i.e., decisively correct); for the data near
the classification boundary, the weighting is in-between. The

slope of the sigmoid function is controlled by the parame-

1

wherel(dp, n) = =

is a sigmoid function, and

The objective oimaximum mutual informatioMMI) was
defined in [2] as:

P(Xpe.i| Ae) P ter ¢ > 0. Its value can be adjusted based upon the data
I(k) =log —3; "y (22)  distributions in specific tasks. i
> jm1 P(XkilAj) P WhenL,, = 1 and{ = 1, we have that thg/ in (26)

If we consider allM models and all data as in the above €dualsto/in(3),and the GMER objective in (26) is simpli-
discussions, the complete objective for MMI training is: ~ 11€d to the MMI or MER objectives. The GMER objective

is equal to the MCE objective if we havé;,, = 1, P, = 1,

M Ng _ andP; = —— on the GMER objective, and have= 1
maxI(A) = ) ) log ﬁ(xk’lp\k)Pk (23)  anda = 0 on the MCE objective.
s 2= POkl A B The new GMER objective is more general and flexi-
M N ble than both MMI and MER objectives. It also remtains
= D) log P(Ak|xuci)- (24)  the most important parametefsfrom the MCE objective.
k=1i=1 The weighting parameterin MCE was replaced by, in

By comparing (16) and (24), we observe that the difference the GMER ob_ject_ive._ The most important factor is that t.he
between the simplified version of the MCE objective and GMER objective is simpler than MCE; thus, we can derive
the MMI objective is primarily in the logarithm. Since the & NéW set of closed-form formulas for fast parameter esti-
logarithm is a monotonically increasing function aNds a ~ mation for discriminative training [3, 4].

constant, a procedure to optimize (24) is equivalent to opti-

mize (16); therefore, the MMI objective in (24) is equivalent 5. EXPERIMENTAL COMPARISONS

to:
M N The results from the above theoretical analysis are consis-

max [(A) = %ZZP (Aklxk,i) (25)  tent with the experimental results reported from different
k=11i=1 research sites.
which equals the simplified version of MCE objective in In speaker verification, ML (maximum likelihood), MMI,
(16) or the MER objective in (3). and MCE objectives were compared using the NIST 1996



ficult to determine the value db as reported in literature.

Table 1. COMPARISONS ONTRAINING ALGORITHMS The GMER algorithm is developed under our belief that

Objec- Algorithms Learning | Relation to for the b ; . f -

tives Parameters Post. Prob. or; e best per or(;naﬂcesi,a_ln terms oOI recognition accurrz:lca/

ML Closed form/EM None Not related and training speed, the objective and optimization metho
should be developed jointly. The GMERS recognition accu-

MMI Closed form D Same is similar to MCE while the traini his cl ;

MCE Gradient Learning | Extended racy Is simrar to whiie Ihe fraining speech 1 close 1o

descent/GPD rates the EM algorithm used in thg ML est.lma.u.on.
GMER Closed form None Extended It has been argued that it is not intuitive how the MMI

objective relates to error rates. From the above discussions,
the answer is straightforward because we have linked the
evaluation dataset by Mat al. [7]. There are 21 male tar- MMI objective to thee_l postgrioriprobapility and error rates.
get speakers and 204 male impostors. The reported relativdl We wantto further investigate the differences between the
equal-error-rate reductions compared to the ML objective MCE objective in (5) and MMI objectives in (24), the dif-
are 3.2% and 7.0% for MMI and MCE, respectively. ferences are mainly in the parameter sgt listed from _(_17) to
In speech recognition, MLE, MMI, and MCE objec- (21_). In theory, tho_se parameters provide t_h_e flexibility to
tives were compared using a common database by Reichpdiust the MCE object for different recognition tasks and

and Ruske [5]. It was found that both MMI and MCE ob- data distributions; therefore, MCE object is more general

jectives can have speech recognition performance improve-compared to the MMI and MER objectives. o
In conclusion, the theoretical analysis in this paper indi-

ments over the ML objective. The absolute error-rate reduc- T e .
tion in the MMI objective is 2.5% versus 5.3% in the MCE cates that the discriminative objectives used in speech and
objective. speaker recognition are all related to thposterioriproba-

In speaker identification, we compared the ML and GMERIIItY @nd error rates. While the MMI is directly from tee
objectives using an 11-speaker group from the NIST 2000 posteriori probability, the MCE and GMER objectives can

dataset. For the testing durations of 1, 5, and 10 seconds, th@€ €quivalent to theosteriori probability under some as-
ML objective had error rates of 31.4%, 6.59%, and 1.39% sumptions. Th_e re_sults from this paper S_h(_)W that t_h_e MCE
while the GMER objective has error rates of 26.81%, 2.21%, &"d GMER objectives extend tizeposteriori probability-

7% based objectives, and they are more general and flexible

and 0.00%. The relative error rate reductions are 14.7%, A i ) )
66.5%, and 100%, respectively. For the best results, thefNan the MMI objective. As validated in experiments, the
extension and flexibility can benefit real applications for dif-

weighting scalarsl.,,, were determined by the algorithm - e

(L., # 1.0), and the slope of sigmoid function ¢s= 0.8. ferent recognition task_s or data dlstr|but_|_ons.

Based on our above analysis, this implies that the GMER 1€ author would like to thank Dr. Biing-Hwang Juang

objective also outperforms the MMI and MER objectives, [oF useful discussions.
The above experimental results showed that by adjusting

the additional parameters, the MCE and GMER can provide 7. REFERENCES
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