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ABSTRACT lem in the second approach, we proposed a new discrimina-

tive training algorithm called the fast MER estimation in [2],
where the results showed that the new algorithm can provide
Better performance with much faster training compared to a
conventional gradient-descent based algorithm for discrim-
inative training.

In our previous paper [2], the fast MER algorithm is a
d-dimensional algorithm, i.e. we assume that one train-
ing or testing token is one observation or a single feature
vector. It is for general pattern recognition applications. In

. . . e .7 this paper, we extended the algorithm to a sequence-based
ing on gradient search, without sacrificing the algorithmic algorithm, i.e. we assume that one training or testing to-

rigor. As such, it is in general much faster than a descentken is an observation sequence or a set of feature vectors.

batsed al?onth_m argl does no_t neetd tﬁ detetrr:mtnte;]the Iearnlng_\ natural application for this extended algorithm is speaker
rate or step size. Our experiment Shows that thé propose dentification, which is important today for security appli-

?Igc:)Lrltgm reéjli%es errordrate; tsy %.4'62’ ?6'46’ an(:. 1?0'(.)0%cations. We then verify the proposed algorithm on the per-
orl, 5 an seconds of testing data respectively, In ag, . mance of a speaker identification task.

speaker identification application.

This paper presents a fast discriminative training algo-
rithm for sequences of observations. It considers a sequenc
of feature vectors as one single composite token in training
or testing. In contrast to the traditional EM algorithm, this
algorithm is derived from a discriminative objective, aim-
ing at directly minimizing the recognition error. Compared fixe
to the gradient-descent algorithms for discriminative train-
ing, this algorithm invokes a mild assumption which leads
to closed-form formulas for re-estimation, rather than rely-

2. OBJECTIVE FUNCTION
1. INTRODUCTION

In an M -class classification problem, we are asked to make
Pattern recognition is one of the core techniques for com- g decision to identify a sequence of observatioXs,as
puter applications. It constructs mathematical pattern clas-member of a class, sag;. The true identity ofX, sayC’,
sifiers using pre-collected training data. Current approachess not known, except in the design or training phase in which
to pattern classifier design fall into two categories: (1) the gpservations of known identity are used as reference for pa-
distribution-estimation approach based on Bayses’ decisionigmeter optimization. We denote eventas the action of
theory; and (2) the discriminative training approach baseddentifying an observation as classThe decision is correct
on minimizing the classification error rate [1]. Since the if ; — j, otherwise incorrect. It is natural to seek a decision
second approach aims directly at minimizing the error rate, ryle that minimizes the probability of error, or empirically,

it usually provides better performance compared to the morethe error rate, which entails a zero-one loss function:
traditional distribution estimation approach. In term of train-

ing algorithms, the first approach uses the EM algorithm for
maximum likelihood estimation of the data distributions. It
is usually very efficient even though it is an iterative proce-
dure. For speech recognition, it often takes only a few itera- It assigns no loss to a correct decision and assigns a unit
tions for the solution to converge. The second approach used0ss to an error. The probabilistic risk of corresponding
gradient-descent algorithms, which usually need more caret© this loss function is

in numeric treatments, need to properly determine the learn- M

ing rate or step sizg fc_)r parameter update, and t_ak_e more it- p(q,;|X) = Zﬁ(ailcj)P(CﬂX) =1-P(C|X) (2
erations during optimization. To address the training prob- =

0 i—j =1, M
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where P(C;|X) is thea posteriori probability thatX be-
longs toC;. To minimize the probability of error, one should
therefore maximize tha posterioriprobability P(C;|X).
This is the basis of Bayes’ maximum posteriori (MAP)

the true class and competing classes are equally important.
The range of the values @f can be determined during esti-
mation. WhenL = 1 anda = 1, we haveJ = J.

decision theory and is also referred to as minimum error 3. SEQUENCE-BASED ESTIMATION FORMULAS

rate (MER) [3] in an ideal setup. The posterioriprob-
ability P(C;|X) is often modelled as, (C;|X), a func-
tion defined by a set of parameteys Since the parameter
set)\; has a one-to-one correspondence with we write
Py, (Ci]X) = P(X\;|X) and other similar expressions with-
out ambiguity. For training, we further define an “aggre-
gate”a posteriori(AAP) probability:
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whereX,, ,, is then'th training token from classn, M is

the total number of classe$],, is the total number of to-
kens for classn, and P, is the corresponding prior proba-
bility. Let us assume: (1) one tokeK,,, ,,, consists of a se-
guence of observations (or frame¥;, , = {Xm.n, q}q 1
whereQ),, is the total number of the observations or frames
in the n'th token; and (2) the observations are indepen-
dent, identically distributed (i.i.d.). Thus, probability or
likelihood p(X,,, | A ) is calculated asp(X., | Am)
H " P(Xm.,n,q|Am). Note that the MAP objective can be
rewntten for the AAP probability as:

1 M N | M N
M Z Z E(dm,’n,) = M Z Z gm,n (4)

man =
m=1n=1 m=1n=1
wherel(d, ) = 1+e+d is a sigmoid function, and
dm,n - logp(xm,n|A7n)Pm_log Z p(Xm,np‘j)Pj (5)

j#m
represents a log probability ratio between the true class

and competing classgs# m. The sigmoid function pro-
vides different weights to different training data. For those

data that are hardly ambiguous in their classification, the

weight is close to 1 (i.e., decisively wrong) or O (i.e., deci-
sively correct); for those data near the classification bound-

ary, the weighting is in-between. The slope of the sigmoid

function is controlled by the parameter wherea > 0.
Thus, the values ofr can affect the training performance

and convergence. The value needs to be pre-selected for dif-

ferent tasks as in other discriminative training algorithms.

We now apply this formulation to a classifier design em-
ploying, specifically, the Gaussian mixture model (GMM)
as the conditional probability density function:

I

) = Z Cm,ip(xm,n,q |/\m,z)

i=1

p(xm,n,qp‘m (6)

wherep(X, n,q| Am) IS @ mixture densityp(x,, n,q|Am,i) iS
a component density,,, ; is the mixing parameter subject
to Ef ¢m,i1, and I is the number of mixture components
that constitute the conditional probability density. The pa-
rameters for the component density is a subset of the pa-
rameters of the mixture density, i.e\,, ; C A,,. In most
applications, the component density is defined as an Gaus-
sian kernel.

Let Vy,, ,J be the gradient of with respect td,,, ; C
Am.i. Vanishing the gradient to maximizg we have:

Ny Qn
vem,i'] = Z Z QmJ(X’"LJL,q)vOm,i 1ng(xm,n,q‘/\m,i)
n=1gq=1
N. Qfl
—L Z Z Q;,i(%j,n,0) Vo, 108 p(%Xj,7,q| Am,i)
j#£mn=1gq
=0 (7)
cm,ip(xm,n,ql/\m,i)
Qm,i(xm.,n, ) = ‘em,n(]- - gm,n) (8)
/ p(xm,n,q|/\m)
A Cm,ip(x ’,ﬁ,“'Am,i)Pm
Qi(%jn,0) = Lin(1 = Ling) o ©)
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wherel is computed using (5) to represent the (unregulated)
error rate. (This is deliberately set to separate, in concept,
the influence of a token from the relative importance of vari-
ous parameters of the classifier upon the performance of the
classifier.) To find the solution to (7), we assume at;
and(2; ; can be approximated as constants.

1) Estimation of Covariance Matrices-or a Gaussian
component, we have

) Py,

1ng(xm,n,q‘)‘m’i) = - IOg[(27T)d/2‘2m,i|l/2]

For numeric consistency, we introduce a weighting scalar 1

L,, into (5). Thus, we havé,, ,, = log p(X,, n|Am) P —
L, log Z#mp(x,w,,p\j)Pj, where0 < L,, < 1. For
simplicity, we denotelL,,, = L. Intuitively, L represents
the weighting between true class and competing classes
j # m. WhenL < 1, it means that the true class is more im-
portant than the competing classes. Wlies 1, it means

(Xm,n,q - ,um,i)TE;ii(Xm,n,q - ﬂm,z)

2
where i, ; and X, ; are the mean vector and covariance
matrix of thei’th component of then’th GMM. d is the di-
mension of observation vectors, afidepresents the vector
or matrix transpose.



For optimization of the covariance matrix, we take the
derivative with respect to matrix,,, ;

1
vEm,i Ing(Xm,mq‘/\m,i) = §Em i
-1

(10)

1
+= 9 Em Z(Xm n,q ﬂm,i)(xm,n,q - ,Um,i)TE

d
whereVy is defined as a matrix operatok; = {af } .
9l j=

wheres; ; is an entry of matrix3, andd is the dimension
number of observation vectors. Bringing (10) into (7) and
rearranging the terms, we have:

A-LB
Ymi=— 11
== (1)
Nm Q‘VL
A= Z Qm,i(Xm,n,q)(Xm,n,q_ﬂm,i)(Xm,n,q_ﬂm,i)T
n=1qg=1
(12)
Nj Qn
B = 30 303 ) g )0 )
Jj#mn=1gq=1
(13)
Ny Qn N; Qn
D=3 > QnmiXmng) ~ L Q;,i(%j.7.q)
n=1qg=1 Jj#mn=1g=1
(14)

Both A andB are matrices anf) is a scalar. For simplicity,
we ignore subscripts:, i for A, B, andD.

2) Determination of Weighting ScalaThe estimated
covariance matrixx,, ;, must be positive definite. We use

this requirement to determine the upper bound of the weight-

ing scalarL.

Using the eigenvectors ok ~'B, we can construct an
orthogonal matriXU, such that (1A — LBU” (A—LB)U,
where bothA andB are diagonal, and (2) both — LB and

A — LB have the same eigenvalues. We have proved these

claims in [4]. L can then be determined as:

- Nd
L< min{?k} ,
b ) =1

wherea; > 0 andb; > 0 are the diagonal entries ot
andB, respectively.L also needs to satisfip(L) > 0 and
0 < L < 1. Thus, for the'th mixture component of model
m, we can determind.,, ;. If model m has/ mixtures,
we need to determine onk,, to satisfy all mixture com-
ponents in the model. Therefore, the upper bound,gfis
L., < min{L,,1,Lm2,-.-,Lm 1} In numerical compu-
tation, we need an exact numberigftherefore, we have

(15)

Lm = nmin{LmJa Lm,2; ey L’m,[}a (16)

where0 < n < 1is a pre-selected constant and it is easier to
determine compared to the learning rate in gradient-descent
algorithms.

3) Estimation of Mean VectardVe take the derivative
of (10) with respect to vectqt,,, ;:

_ y—1
=2 (Xmng

vl’wn,i logp(xmvnaq )\777“71) - lumﬂ) (17)

d
whereV , is defined as a vector operafoy, = [%} )
.
wherey; is an entry of vectog, andd is the dimension
number of observation vectors. Bringing (17) into (7) and
rearranging the terms, we obtain the solution for mean vec-

tors:

E - LF

Hm,i = D (18)

Nf?l Qn
E= Z Qm 7.(Xm,n q)xm n,q (19)

n=1qg=1

Nj Qn B
F= Qj.i(Xj,n,6) %577 (20)
j#Fmn=1qg=1

and D is defined in (14). Again, for simplicity, we ignore
subscriptsn, i for E, F, andD. We note that the botk
andF are vectors, and scaldrhas been determined when
estimating®,,, ;.

4) Estimation of Mixture Parameter3he last step is to
compute for the mixture parameters ; subject tto Cmyi =
1. Introducing Lagrangian multiplierg,,, we have

M I
Fo Tt (zcm,i_l> |
m=1 i=1

Taking the first derivative and vanishing it for maximization,
we get

(21)

aJ 1
D+ v, =0. (22)
acm,i Cm,i
Rearranging the terms, we then have
1
Tm
Summing ovek,, ;, for i = 1...I, we can solvey,, as
Ym = ~(G ~ LH) (24)
Nm Qn Im
G = Z Z Z Qm,i(ci; Xm,n,q) (25)
n=1gqg=1 =1
N] Q'i I7
H = Qjﬂ' (Ci, Xjﬁ). (26)



Bring (24) into (23), we have Table 1. SPEAKER IDENTIFICATION ERROR RATES ON

D DIFFERENT ALGORITHMS AND TESTING DATA(%)
Cmi = S LH (27) Algori- Itera- Test Length
thms tions 1sec| 5sec| 10sec

5) Remarks:So far, we only discussed the necessary
condition for optimization, i.e.Vy,, ,J = 0. In theory, we
also need to meet the following sufficient conditions:

1.V; J < 0. Thisis to ensure an maximum solution;

2. |V, Qi = 0and|Vy,, Q| ~ 0 aroundf,, ;.
This is to ensure tha®,, ;(6,, ;) and Qj7i(9,n7i) in (7) are

approximately constant so as to support the closed-form " frames at every frame on the testing data. A detailed intro-
estimation formulas. While theoretical proof of this as- :

sumption is not available, we validate the algorithm through duction to speaker identification and typical ML estimation

experiments and use it in applications approach can be found in [6].
P PP ' We first constructed GMM with 8-mixture components

for every speaker using the ML estimation. Each GMM
4. TRAINING PROCEDURE was then further trained discriminatively using the proposed
o ~_ sequence-based MER estimation. During test, for every
The training procedure of the proposed fast MER estimation segment, we computed the likelihood scores of all trained

can be summarized as follows: GMM's. The speaker with the highest score was labelled as
1. Initialize all models parameters for all classes by ML e owner of the segment.

estimation; _ . The experimental results are listed in Table 1. For 1, 5,
2. For every mixture componentn modelm, compute 554 10 seconds of testing data, the proposed string-based

Qi andQy, ; using (8) and (9), and compute, B, andD  \ER algorithm made 14.56%, 66.46%, and 100.00% rela-

using (12), (13), and (14); tive error rate reduction compared to the ML estimation.
3. Determine the weighting scalarby (16);

4. For every mixture componefntcomputeX,, ; tim, i,
andc,, ; using (11), (18), and (27); 6. CONCLUSIONS

5. Evaluate the performance using (4) and (5) for model
m. If the performance is improved, save the best model
parameters;

6. Repeat Step 2 to 5 for the required number of itera-
tions for modelmn;

7. Use the saved model for clagsand repeat the above
procedure for all untrained models.

8. Output the saved models for testing and applications.

ML Estimation 5 3141| 6.59 | 1.39
String-Based MLE5 | 26.81| 2.21 | 0.00
MER (Propossed) + MER1

Error Reduction | 14.65] 66.46 100.00

We extended the frame-based, fast MER estimation to a
sequence-based one. It showed significant improvement in
text-independent speaker identification application compared
the traditional ML estimation. It will be straightforward

to extend this string-based MER algorithm to train hidden
Markov models for speech recognition.
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