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ABSTRACT

Currently, almost all discriminative training algorithms for
nonlinear classifier design are based on gradient-descent
methods, such as the backpropagation and the generalized
probabilistic descent algorithm. These algorithms are easy
to derive and effective in applications. However, a draw-
back for the gradient-descent approaches is the slow train-
ing speed, which limits their applications in large training
problems, such as large vocabulary speech recognition and
other applications. For hidden Markov models, some train-
ing algorithms, such as the reestimation (or expectation-
maximization) algorithm for maximum likelihood estima-
tion (MLE), are fast, but they are not readily extendible
to discriminative training for recognition performance im-
provements. To address the problem, we proposed a fast
discriminative training algorithm in this paper. It is a batch-
mode algorithm derived for the objective function of mini-
mal error rate. The significant advantage is its closed-form
solution for parameter estimation during iterations, instead
of incremental search in the direction of gradient, as conven-
tionally done. We experimentally show that the algorithm
requires only a few iterations to achieve the optimization
objective and that the estimated results lead to better recog-
nition performance than a traditional MLE.

1. INTRODUCTION

There are two kinds of pattern classifier: linear and nonlin-
ear. A linear classifier, such as a single perceptron, usually
constructs a hyper-plan to partition the data space. A non-
linear classifier, such as multi-layer perceptron (MLP) net-
works, Gaussian mixture models (GMM), hidden Markov
models (HMM), etc., usually consists of nonlinear kernels
to model the data distribution. There ate two kinds of train-
ing algorithms: discriminative and distribution estimation.
The objective of discriminative training is to reduce the clas-
sification error as much as possible; algorithms in this class
include backpropagation [1], and generalized probabilistic
descent (GPD) [2]. Distribution estimation based algorithms
are based on the Bayes classifier formulation with suggests

estimation of the data distribution as the first and imperative
step in the design of a classifier. The most commonly used
criterion for distribution estimation is maximum likelihood
(ML) [3]. The Expectation-maximization (EM) algorithm
for ML estimation is in general very efficient because while
it is a hill-climbing algorithm, it guarantees net gain in the
optimization objective at every step of the iteration, leading
to uniform, rather than stochastic, convergence. Discrimina-
tive training algorithm for nonlinear classifiers are generally
based on gradient descent and thus converge slowly. The
slow convergence makes applications of these algorithms in
large vocabulary speech recognition (LVSR) unattractive.

In this paper, we propose a fast discriminative training
algorithm for a nonlinear classifier, namely the Gaussian
Mixture Model (GMM), which is the basic component of
hidden Markov model (HMM). We use minimum error rate
(MER) as the objective for discriminative training and thus
name the algorithm fast MER optimization. It is a batch-
mode approach with a closed-from solution for local opti-
mization during each iteration. The model parameters are
first initialized by an ML estimation, then in a few itera-
tions, the model is trained to optimize the objective function
of MER. We demonstrate through experiment that the algo-
rithm produces optimization results as fast as the reestima-
tion algorithm in terms of efficient and better than the MLE
in terms of the classification performance.

2. DERIVATION OF THE FAST MER ESTIMATION

In an � -class classification problem, we are 1) given an
observation x, a member of class ��� , and 2) asked to make
a decision, to classify x into, say, class ��� . We denote this
as an action ��� . The decision is correct if 	�

� , otherwise
incorrect. It is natural to seek a decision rule that minimize
the probability of error, or error rate. A popular function
of interest for this kind of problem is called zero-one loss
function:��� � ��� � ��� 
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It assigns no loss to a correct decision and assign a unit loss
to any error. The risk corresponding to this loss function is" � ��� � #�� 
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where ) � ��� � #�� is the conditional probability that the action��� is correct. To minimize the average probability of er-
ror, we should maximize the posterior probability ) � � ��� #�� .
This is the basis of maximum a posteriori (MAP) decision
theory and is also empirically referred to as minimum error
rate (MER) or minimum classification error (MCE) [2] cri-
terion. We therefore aim at maximizing the overall posterior
probability as:
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where for class 8 , # .74 1 is the 9 th training token, : . is
the total number of tokens, and ) . and

2 . are the prior
probability and the mixture model, respectively.

Note that the MAP objective can be rewritten as:
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where 0 LMHON 1 is a weighting scalar. When HP
 1,
Eqn. (4) is equivalent to Eqn. (3) and to the empirical cost
defined in [2] as the so-called MCE discriminative training
objective. Specifically, let the model be a Gaussian mixture
(GMM):
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where T Q� S .74 ��
 1, and I is the total number of mixtures.
Let UWV
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, be the gradient of , with respect to Y .�4 �[Z2 .�4 � . Vanishing the gradient to maximize , , we have:
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To be able to get a closed-form solution, we assume that the
model parameters in 6

� # .74 1 � 2 .�4 � � of Eqn. (7) is indepen-
dent to the parameters in ] . and ¯] � within each iteration.

From Eqn. (6), we have
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For the covariance matrix estimation, taking the derivative
with respect to matrix Σ .�4 � , we haveU Σ 0@EGX
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Bringing Eqn. (10) into Eqn. (7) and rearranging the terms,
we obtain the formula to estimate the covariance matrix:
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To ensure that Σ .�4 � be positive definite, we need to adjust
the value of H . Let w +yH5xP
Oz l � ˜w +yH ˜x � z , where z
is the orthogonal eigenvalue matrix so both ˜w and ˜x are
diagonal. Then, w +IH�x is positive definite if
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where ˜| ��� 0 and ˜} ��� 0 are the diagonal entries of ˜wand ˜x , respectively. H also needs to satisfy
q � H � � 0 and

0 L�H�N 1.
For the mean vector estimation, take the derivative of

Eqn. (10) with respect to vector j .�4 � . We haveUW�
0@EGX
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Bringing Eqn. (14) into Eqn. (7) and rearranging the terms,
we obtain the formula for mean vector estimation:
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where
q

is defined in Eqn. (12) and, and the scalar H has
been determined when estimating Σ .74 � .

The last step is to estimate the mixture parameters S .�4 � .We now need to maximize , subject to T Q� S .�4 � 
 1. Intro-
ducing Lagrangian multiplier � , we have
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Taking the first derivate and vanish it for maximum, we have� ˜,� S .74 � 

1

S .74 � q o ��
 0 � �
17 �

Rearranging the terms, we have
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Summer over S .74 � , for 	@
 1 �����G� , we can solve � as
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In summary, the procedure of the proposed fast MER
estimation is:

1. Initialize all models parameters by MLE;

2. For every mixture component 	 in model 8 , compute] .74 � and ¯] .�4 � using Eqn. (8) and Eqn. (9);

3. Determine the weighting parameter H by Eqn. (13)
and other constrains;

4. For every mixture component 	 , estimate Σ .74 ��j .�4 � ,
and S .74 � using Eqns. (11), (15), and (18);

5. Evaluate the performance using Eqn (3) for model 8 ;

6. If the performance is improved, keep the new model
and goto Step 2, otherwise break;

7. Repeat the above procedure for all models.

3. EXPERIMENTAL RESULTS

To evaluate the proposed algorithm, we conduct two exper-
iments.

3.1. Three-Class Classification

In this example, we artificially generated three classes of
2-dimensional data. The distributions were of Gaussian
mixture types with three components in each class. Each
token is of two dimensions. For each class, 1,500 tokens
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Figure 1: Contours of 3 classes of training data
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Figure 2: Contours of 3 models after MLE.

were drawn from each of the three components; therefore,
there are 4,500 tokens in total. The contours of the training
data for class 1, 2 and 3 are shown in Fig. 1 where the means
are represented as

o
, � , and � , respectively.

To simulate real applications, we assume that the number
of mixture components are unknown. Therefore, we assume
the GMMs, which need to be trained, have two mixture
components for each class. In the first step, MLE was
applied to initialize the GMMs. The contours that represent
the 6

=��
’s of each of the GMMs after MLE are plotted in Fig.

2. We then use the proposed fast MER estimation to train
new GMMs. The contours to represent the 6

=��
’s of each of

the GMMs after MER estimation are plotted in Fig. 3. All
above contours are plotted on the same scale.

By comparing Fig. 2 and Fig. 3, we can observe that
MER training reduces the overlaps amount three classes sig-
nificantly. The MLE took 3 or 4 iterations for each of the
models while the MER estimation conducted two iterations
for the first class and 0 iterations for others since MER
training found further iterations on them unnecessary. The
testing data with 4,500 tokens for each class were drawn in
the same methods as the training data. The MLE provides
an accuracy of 76.46% and 76.47% for training and testing
datasets respectively, while the proposed MER estimation
improved the accuracy to 76.96% and 76.71%. If we use
the same model of generating the training data, the ideal



−10 −5 0 5
−5

0

5

10

Figure 3: Contours of 3 models after the proposed MER
training with two iterations on the classes with “+” means.
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Figure 4: MER iterations on the first class.

performances are 77.39% and 77.11% for training and test-
ing, which are the ceilings of this example. To evaluate the
behaviors of the MER training, we plot the values of the
objective as a function of 10 iterations in Fig. 4. Although
there is no guarantee on convergence on each iteration, the
proposed algorithm seems effective. Actually, training was
stooped at the second iteration for the above performances.

3.2. Vowel Classification

The second experiment used the Peterson-Barney vowel for-
mant data [4]. It consisted of 10 vowels from 76 speakers
(33 men, 28 women and 15 children). Each vowel was rep-
resented in terms of 4 features: the fundamental frequency
and the first three formant frequencies. Fundamental and the
formant frequencies were measured by Peterson and Bar-
ney from the central steady-state portions of the utterances.
There were two tokens for each vowel of each speaker. We
used the first token as training dataset and the second token
as testing dataset. There were 10 classes in total and each
vowel represents one class. The classifiers were first trained
by MLE in two iterations, then MER estimation. The per-
formance was saturated after the first MER iteration. The
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Figure 5: MLE and MER training and testing performances.

experimental results on both training and testing datasets are
plotted in Fig. 5. The proposed MER algorithm improved
the classification performance in one iteration.

4. CONCLUSIONS

We proposed a fast discriminative training algorithm for
MER estimation. Based on an assumption, the algorithm
provides a closed-form solution for parameter re-estimation
in each iteration. Therefore, like MLE, the algorithm can
train classifiers in a few iterations which is faster than
gradient-descent-based methods. We note that this paper
only reports some preliminary results. Further research is
necessary to investigate the properties of the proposed MER
algorithm. It will be straight forward to extend the algorithm
to train hidden Markov models for automatic speech recog-
nition if we can further prove that this algorithm is effective
and efficient in more classification applications.
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