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ABSTRACT

Currently, themost popular algorithm for hidden Markov
model (HMM) decoding is the Viterbi algorithm with beam
search to reduce search space. However, it is a difficult
problem in determining a beam width beforehand. To ad-
dress this problem, we propose a novel approach on search
space reduction. Following the definition of HMM, we first
detect the possible change points between HMM states se-
guentialy, then use the change points to locate a subspace
for searching. Using a combined forward and backward
scheme, we can detect two boundaries consisting of change
pointsto enclose the subspace. The Viterbi algorithm or any
other search agorithms can then be applied in the subspace.
The experiments on a speaker verification task show that
the proposed algorithm is about 4 times faster than a full
search algorithm while the accuracy is aimost the same. On
the same decoding speed, the proposed algorithm providesa
better accuracy than a beam-search approach. For an HMM
with S states, the upper bound of speedup comparing to the
full search approach is approximately S/3.

1. INTRODUCTION

Hidden Markov Model (HMM) has been widely used in
speech and speaker recognition in which the non-stationary
speech signal is represented as a sequence of states. In
recognition, given an utterance and a set of HMMs, adecod-
ing algorithm is then needed to search for the optimal state
path, such that the overall likelihood score of the utteranceis
maximum. The decoding algorithm is very important to any
speech or speaker recognition system since it is the funda-
mental computation and the algorithm can affect the system
performance significantly.

Generally speaking, there are two basic requirementsfor
a decoding algorithm — accuracy and speed. Several search
algorithms have been developed. They are Viterbi search,
stack decoders, multi-passsearch, forward-backward search,
state-detection search, etc. The Viterbi algorithm [2] isopti-
mal in the sense of maximum likelihood. Therefore, it meets

the first above requirement. However, a full Viterbi search
isamost impractical dueto the large search spacein speech
decoding. There are two major approaches to address the
speed problem. Oneway isto changethe optimal algorithm
to a near optimal one in order to gain the decoding speed
(e.g. [1]) but it may lose some accuracy. Another way
is to keep the optimal decoding algorithm while trying to
reduce the search space. The most popular oneis the beam-
search algorithm (e.g. [3]). It reduces the search space by
pruning the search paths with low likelihood scores using
a pre-determined beam width. Obvioudly, it improves the
decoding speed due to the reduced search space, but it is
difficult to determine the beam width beforehand. When the
value of beam width is too large, the decoder can provide a
better accuracy but it slows down the speed; when the beam
width value is too small, the decoder is faster but it may
give poor accuracy. To address this problem, we propose
an agorithm which can determine a subspace from the con-
straints of HMM without the need of a beam or any other
threshold. It would not miss the optimal path in the case
that the utterance matches the HMM. In an imposter case,
the algorithm can limit the search space therefore it has the
potential to decrease the impostor’slikelihood scores. Once
a subspace is determined, a search algorithm such as the
Viterbi algorithm or any other search algorithm based on
dynamic programming can be applied to find the optimal
path in the subspace.

2. HMM STATE CHANGE-POINT DETECTION

An HMM can be completely characterized by a matrix of
state transition probabilities, A, observation densities, B,
and initial state probabilities, .

/\I{A,B,H}I{aiyj,bi,ﬂ'i}, i,j:l,...,S, (1)

where N isthetotal number of states. Given an observation
vector o, the continuous observation density, for state j is

bj(0) = pi(01) Y cimN (01, tjm, Zim),  (2)

m=1



where M is the total number of the Gaussian components
N(.), pjm and Z;,, are the mean vector and covariance
matrix of the mth component at state j, respectively

As we proposed in [1], to detect the change point be-
tween states is similar to the task of detecting the change
point between two data distributions. For a left-to-right
HMM, it can be implemented by repeating the following
procedure until obtaining thelast change point between state
S—1andS.

Given atimethreshold t5 > 0. we observe data sequen-
tially at time ¢, and decide that the change from state s to
s+ 1occurs, if

t—1{l5 >1s, (3)
and
t k
T(o:) = | Z R(oi)—ZS_rILlQSt | Z R(0;) } > ¢,
i=fs_1+1 i=fs_1+1

(4)

wheree > 0, £,_1 isthe end point of the last state,

e £ )

i=Ls_1+1

bs1+1(0;)

R(o;) = b(0) | s=1..,5-1, (6)
and b;(.) isdefined in Eq. (2). It is straightforward to im-
plement the above procedure in a recursive form. For the
task of search space detection, we letts = 1and e = 0.
Thus, the detector would not make any false rejection but
with false acceptances. Nevertheless, the false acceptances
can be resolved in the a gorithm introduced in the next sec-
tion. Also, the above detection algorithm can be extended to
the cases where one or more state skip is allowed in HMM
decoding.

3. HMM SEARCH SPACE REDUCTION

The entire search space in terms of grid points for HMM
decoding can be defined as

W= {(t,s)|1<t<Ti1<s <5}, (7)

where(t, s;) € Wisagrid point for probability computation,
t isthe frame number of feature vectors, s; isthe state index
attimet, 7" and S are thetotal numbers of framesand states,
respectively. The probability value at each grid point can be
computed by Eq. (2). The goal isto detect a subspace Q C
W, which includes the path with the maximum likelihood
score under the constraint of the left-to-right HMM.

When applying the above state change-point detection
algorithm with¢; = 1 and ¢ = 0 in aforward time scheme,
i.e. fromt = 1tot = T, we can detect a sequence of state

change points. The grid points along the sequence form
a boundary in the search space, called forward boundary
defined as

BY ={(t,sh)|sf <sfpt=1..Tfcw, (8

where s} isthe stateindex at timet along the boundary. An
example of the forward boundary is shown in Fig. 1 asthe
solidline. Thegrid pointsaong the forward dished lineand
the solid line are involved in the forward detection.

On the other hand, if we detect the state change points
in a backward time scheme, i.e. from¢ = T'to¢ = 1, we
can detect another sequence of state change points. Thegrid
points along the sequence form another boundary, called
backward boundary defined as

B~ ={(t,;s7)|s; <sppt=1..T}C¥, (9)

wheres; isthe stateindex at time¢ along the boundary. An
example of the backward boundary is again the grid points
along the solid line in Fig. 1. The dished line from right
to left indicates the direction of the backward sequential
detection.

Generally speaking, neither one of the boundaries guar-
antees the optimal path since both of them may include
false acceptances. However, the two boundaries enclose a
subspace, consisting of the grid points inside and along the
boundaries. If the following constraints hold,

Q={(t,s) |1<t<Tisy <se<sf}, (10

where (¢,s7) € B*, (t,s7) € B~,and Q C ¥, i.e, the
grid points of the forward boundary are above the backward
boundary at every time frame, the optimal path must be
included in Q under the constraint of left-to-right HMM
since neither one of the boundaries allows false rejection.

However, the constraint in Eg. (10) may not hold for
every grid point, i.e., the grid points of BT may be located
below B~ at some time frames. This may be due to a
skipped state, amismatch between the model and data, or the
utteranceisfromanimposter. Inthisspecial case, depending
on applications, we can reject the utterance or perform afull
search in W or construct a search space as follows,

N

M
Q= ém ¥n (11)
m=1

n=1

where ¢,,, isasurrounded subspace,
bm={(ts) |t <t<tiisy <si<st},  (12)
and ¢, isarectangular subspacein which B+ isunder B,

UYn = {(t,st) [t; <t <tj;sf <s < s;j}. (13)
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Figure 1: A single path (solid line) is detected from the
forward and backward change-point detection.

A search algorithm can then be employed in Q or Q' to find
the optimal path. There are several typical cases of search
space detection. We discussthem asfollows. A real search
space can be a combination of these cases.

Case 1l: SinglePath in the Reduced Space

If the forward and backward boundaries are identical, it
indicates that there exists only a single path in the reduced
search space, i.e. BT = B~ = Q. In this case, search
is not necessary, and a maximum likelihood score can be
computed from the path directly. An example is shown in
Fig 1 asthe solid line. The points along the dished lines are
involved in the change point detection but they are excluded
from Q.

Case 2: MultiplePathsin aLocal Area

When multiple paths exist in a search space, theforward
and backward boundaries may not meet in some local areas
in Q. In this case, search is needed only for those local
areas. An exampleisshowninFig. 2asthe“hole” of 4 grid
points, (8,3), (8,4), (9,3) and (9,4). We only need to search
those 4 grid points.

Case 3: Special Case

In some special case, the forward boundary may be un-
der the backward boundary in some areas, as shown in Fig.
3 between (11,4) to (18,6). This could be caused by the
data which skip one HMM state or the data did not go
through al HMM states. Most likely, the data are from
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Figure 2: A “hole” is detected from the forward and back-
ward state change-point detection. A search is needed only
among 4 grid points, (8,3), (8,4), (9,3) and (9,4).
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Figure 3: A special case locates between (11,4) and (18,6),
where the forward boundary is under the backward one.

an imposter, i.e. there is no match between the testing
data and the HMM. Depend on applications, we can ei-
ther reject the data set, or perform a search on either W
or Q. For the example in Fig. 3, Q' = ¢|Jv, where
d={(t,s:) | 1<t <11;1< s, < 4}, and ¢, isarectan-
gular subspace ¢, = {(¢,s:) |11 <t < 18;4< s, < 6}.

The algorithm can be summarized as follows:

1. Perform a forward state change-point detection and
obtain aforward boundary, B .

2. Perform abackward state change-point detection and
obtain a backward boundary, B~ .

3. If BT isabove B~ at al time frames, search for the
optimal path in subspace Q, Eqg. (10), if necessary,
otherwise, search for the optimal pathin Q’, Eq. (11).

4. Return the accumulated log-likelihood score. Return
the state segmentation if necessary.

In the ideal case with only one single path existing in
the reduced search space, the upper bound of the speedup
of the proposed algorithm for an HMM with S states is
approximately S/3. In other words, the proposed a gorithm
can be S/3 times faster than afull search onein Case 1.

4. EXPERIMENTS

Theproposed al gorithm was compared with the beam-search
and full-search algorithms on a speaker verification task with
totally 3,970 utterances from true speakersand 19,608 utter-
ances from impostors. The database with 100 speakerswas
evaluated on acommon pass-phrase, “| pledge allegiance to
theflag” Decoding is based on speaker-dependent HMMs
with 25 states for the entire pass-phrase. Detail descriptions
on the experimental database, features, model structures,
and verification system can be found in[4]. The verification
decision is based on alog-likelihood ratio test between the
decoding score of thetarget model from thisexperiment and
agiven background score [4]. The experimenta results are



Table 1: Comparisons on Decoding Performances
Pro- Full Beam Widths
posed | Search | 500 | 300 | 200
EER (%) 2.07 209 | 218|224 | 229
Complexity | 0.76 274 | 143 | 114 | 092
(MFlops)
Overhead 6.1 89
(KFlops)

98 | 88 | 81

listedin Tab.1. A summary onthe comparison of the system
accuracy and decoding speedisshowninFig. 4. Theresults
showed that the accuragy, in term of equal-error rates, of
the proposed algorithm is almost the same asthe full search
algorithm and much better than the beam search agorithms
on different beam widths of 200, 300, and 500, where atyp-
ical beam search algorithmwas applied. If (¢, s7) isthegrid
point with the best path at timet, and thelog likelihood score
is L(t, s7), thepath to any (¢, s;) will be acandidate for ex-
tension at frame¢ + Lonly if L(t, s;) > L(¢, sy ) — 6, where
6 is called beam width and usually taken to be a constant.
The decoding complexity of the algorithmsis compared in
million floating point operations (MFlops) and in terms of
speedup which is defined asthe ratio of M Flops between the
full search and other algorithms. The proposed algorithmis
about 4 times faster than the full search algorithm. Com-
pared to the beam-search agorithms, the proposed one is
either much faster when the accuracy is approximately the
same or more accurate when the decoding speed is approxi-
mately the same. Decoding overhead was also evaluated in
Flops. The proposed algorithm uses less Flops than other
algorithms.

The dlightly better accuracy compared to the full search
is due to the search space reduction. As shown in Table 2,
the averagetarget scoresof true speakersare almost the same
whiletheaverageimposter scoreof theproposed algorithmis
reduced due to the mismatch between model and utterances.

5. CONCLUSIONS

In this paper, we first introduced the algorithm on sequen-
tiadl HMM state change-point detection, then proposed an
algorithm on search space reduction. In the algorithm, the
detected state change points are used to form the boundaries
of a search space. When two boundaries are detected from
aforward and backward scheme, a subspaceis determined,

Table 2: Comparisons on Average Target Scores

Algorithms Full Search Proposed
Speakers True | Impostor | True | Impostor
Scores 12.12 0.92 12.10 0.83
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Figure4: (a) Comparison on system equal-error rates (EER);
(b) Comparison to the Viterbi agorithm on speedups.

and asearch algorithm can then beapplied to find the optimal
path. Compared to the beam search algorithm, the proposed
oneis capable of determining a subspace without any beam
width which is difficult to decide beforehand. The experi-
ment in aspeaker verification task showed that the proposed
algorithm can provide much better accuracy than the beam
search algorithm at a similar decoding speed. Compared to
a full search algorithm, the proposed one is about 4 times
faster with almost the same accuracy.
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