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ABSTRACT

Currently, the most popular algorithm for hidden Markov
model (HMM) decoding is the Viterbi algorithm with beam
search to reduce search space. However, it is a difficult
problem in determining a beam width beforehand. To ad-
dress this problem, we propose a novel approach on search
space reduction. Following the definition of HMM, we first
detect the possible change points between HMM states se-
quentially, then use the change points to locate a subspace
for searching. Using a combined forward and backward
scheme, we can detect two boundaries consisting of change
points to enclose the subspace. The Viterbi algorithm or any
other search algorithms can then be applied in the subspace.
The experiments on a speaker verification task show that
the proposed algorithm is about 4 times faster than a full
search algorithm while the accuracy is almost the same. On
the same decoding speed, the proposed algorithm provides a
better accuracy than a beam-search approach. For an HMM
with

�
states, the upper bound of speedup comparing to the

full search approach is approximately
���

3.

1. INTRODUCTION

Hidden Markov Model (HMM) has been widely used in
speech and speaker recognition in which the non-stationary
speech signal is represented as a sequence of states. In
recognition, given an utterance and a set of HMMs, a decod-
ing algorithm is then needed to search for the optimal state
path, such that the overall likelihood score of the utterance is
maximum. The decoding algorithm is very important to any
speech or speaker recognition system since it is the funda-
mental computation and the algorithm can affect the system
performance significantly.

Generally speaking, there are two basic requirements for
a decoding algorithm – accuracy and speed. Several search
algorithms have been developed. They are Viterbi search,
stack decoders, multi-pass search, forward-backward search,
state-detection search, etc. The Viterbi algorithm [2] is opti-
mal in the sense of maximum likelihood. Therefore, it meets

the first above requirement. However, a full Viterbi search
is almost impractical due to the large search space in speech
decoding. There are two major approaches to address the
speed problem. One way is to change the optimal algorithm
to a near optimal one in order to gain the decoding speed
(e.g. [1]) but it may lose some accuracy. Another way
is to keep the optimal decoding algorithm while trying to
reduce the search space. The most popular one is the beam-
search algorithm (e.g. [3]). It reduces the search space by
pruning the search paths with low likelihood scores using
a pre-determined beam width. Obviously, it improves the
decoding speed due to the reduced search space, but it is
difficult to determine the beam width beforehand. When the
value of beam width is too large, the decoder can provide a
better accuracy but it slows down the speed; when the beam
width value is too small, the decoder is faster but it may
give poor accuracy. To address this problem, we propose
an algorithm which can determine a subspace from the con-
straints of HMM without the need of a beam or any other
threshold. It would not miss the optimal path in the case
that the utterance matches the HMM. In an imposter case,
the algorithm can limit the search space therefore it has the
potential to decrease the impostor’s likelihood scores. Once
a subspace is determined, a search algorithm such as the
Viterbi algorithm or any other search algorithm based on
dynamic programming can be applied to find the optimal
path in the subspace.

2. HMM STATE CHANGE-POINT DETECTION

An HMM can be completely characterized by a matrix of
state transition probabilities, � , observation densities, � ,
and initial state probabilities, Π.���	� ��
��
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where $ is the total number of states. Given an observation
vector %'& the continuous observation density, for state � is
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where 9 is the total number of the Gaussian components4 "��:# , 7 � 0 and Σ
� 0 are the mean vector and covariance

matrix of the ; th component at state � , respectively
As we proposed in [1], to detect the change point be-

tween states is similar to the task of detecting the change
point between two data distributions. For a left-to-right
HMM, it can be implemented by repeating the following
procedure until obtaining the last change point between state�=<

1 and
�

.
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and � � "��:# is defined in Eq. (2). It is straightforward to im-
plement the above procedure in a recursive form. For the
task of search space detection, we let >�? �

1 and ^ �
0.

Thus, the detector would not make any false rejection but
with false acceptances. Nevertheless, the false acceptances
can be resolved in the algorithm introduced in the next sec-
tion. Also, the above detection algorithm can be extended to
the cases where one or more state skip is allowed in HMM
decoding.

3. HMM SEARCH SPACE REDUCTION

The entire search space in terms of grid points for HMM
decoding can be defined as

Ψ
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where "j>G
OB & #lk Ψ is a grid point for probability computation,> is the frame number of feature vectors, B & is the state index
at time > , K

and
�

are the total numbers of frames and states,
respectively. The probability value at each grid point can be
computed by Eq. (2). The goal is to detect a subspace Ω m
Ψ, which includes the path with the maximum likelihood
score under the constraint of the left-to-right HMM.

When applying the above state change-point detection
algorithm with >�? �

1 and ^ �
0 in a forward time scheme,

i.e. from > �
1 to > � K

, we can detect a sequence of state

change points. The grid points along the sequence form
a boundary in the search space, called forward boundary
defined as� Q �on "d>G
�B Q& #2e�B Q& fhB Q& Q 1 
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where B Q& is the state index at time > along the boundary. An
example of the forward boundary is shown in Fig. 1 as the
solid line. The grid points along the forward dished line and
the solid line are involved in the forward detection.

On the other hand, if we detect the state change points
in a backward time scheme, i.e. from > � K

to > �
1, we

can detect another sequence of state change points. The grid
points along the sequence form another boundary, called
backward boundary defined as� ` � n "d>G
�B `& #5e�B `& fsB `& Q 1 
t> �

1 
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where B `& is the state index at time > along the boundary. An
example of the backward boundary is again the grid points
along the solid line in Fig. 1. The dished line from right
to left indicates the direction of the backward sequential
detection.

Generally speaking, neither one of the boundaries guar-
antees the optimal path since both of them may include
false acceptances. However, the two boundaries enclose a
subspace, consisting of the grid points inside and along the
boundaries. If the following constraints hold,
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, and Ω m Ψ, i.e., the
grid points of the forward boundary are above the backward
boundary at every time frame, the optimal path must be
included in Ω under the constraint of left-to-right HMM
since neither one of the boundaries allows false rejection.

However, the constraint in Eq. (10) may not hold for
every grid point, i.e., the grid points of � Q may be located
below � `

at some time frames. This may be due to a
skipped state, a mismatch between the model and data, or the
utterance is from an imposter. In this special case,depending
on applications, we can reject the utterance or perform a full
search in Ψ or construct a search space as follows,
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where y 0 is a surrounded subspace,
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and } | is a rectangular subspace in which � Q is under � `

,
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Figure 1: A single path (solid line) is detected from the
forward and backward change-point detection.

A search algorithm can then be employed in Ω or Ω w to find
the optimal path. There are several typical cases of search
space detection. We discuss them as follows. A real search
space can be a combination of these cases.

Case 1: Single Path in the Reduced Space
If the forward and backward boundaries are identical, it

indicates that there exists only a single path in the reduced
search space, i.e. � Q � � ` �

Ω. In this case, search
is not necessary, and a maximum likelihood score can be
computed from the path directly. An example is shown in
Fig 1 as the solid line. The points along the dished lines are
involved in the change point detection but they are excluded
from Ω.

Case 2: Multiple Paths in a Local Area
When multiple paths exist in a search space, the forward

and backward boundaries may not meet in some local areas
in Ω. In this case, search is needed only for those local
areas. An example is shown in Fig. 2 as the “hole” of 4 grid
points, (8,3), (8,4), (9,3) and (9,4). We only need to search
those 4 grid points.

Case 3: Special Case
In some special case, the forward boundary may be un-

der the backward boundary in some areas, as shown in Fig.
3 between (11,4) to (18,6). This could be caused by the
data which skip one HMM state or the data did not go
through all HMM states. Most likely, the data are from
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Figure 2: A “hole” is detected from the forward and back-
ward state change-point detection. A search is needed only
among 4 grid points, (8,3), (8,4), (9,3) and (9,4).
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Figure 3: A special case locates between (11,4) and (18,6),
where the forward boundary is under the backward one.

an imposter, i.e. there is no match between the testing
data and the HMM. Depend on applications, we can ei-
ther reject the data set, or perform a search on either Ψ
or Ω w . For the example in Fig. 3, Ω w � y���} 
 wherey ��� "j>G
OB6&�#ie 1 f_>5f 11; 1 fsB8&lf 4 ��
 and } | is a rectan-
gular subspace } | ��� "j>G
OB6&-#le 11 f+>if 18; 4 fhB8&�f 6 ���

The algorithm can be summarized as follows:

1. Perform a forward state change-point detection and
obtain a forward boundary, � Q .

2. Perform a backward state change-point detection and
obtain a backward boundary, � `

.

3. If � Q is above � `
at all time frames, search for the

optimal path in subspace Ω, Eq. (10), if necessary,
otherwise, search for the optimal path in Ω w , Eq. (11).

4. Return the accumulated log-likelihood score. Return
the state segmentation if necessary.

In the ideal case with only one single path existing in
the reduced search space, the upper bound of the speedup
of the proposed algorithm for an HMM with

�
states is

approximately
���

3. In other words, the proposed algorithm
can be

���
3 times faster than a full search one in Case 1.

4. EXPERIMENTS

The proposed algorithm was compared with the beam-search
and full-search algorithms on a speaker verification task with
totally 3,970 utterances from true speakers and 19,608 utter-
ances from impostors. The database with 100 speakers was
evaluated on a common pass-phrase, “I pledge allegiance to
the flag.” Decoding is based on speaker-dependent HMMs
with 25 states for the entire pass-phrase. Detail descriptions
on the experimental database, features, model structures,
and verification system can be found in [4]. The verification
decision is based on a log-likelihood ratio test between the
decoding score of the target model from this experiment and
a given background score [4]. The experimental results are



Table 1: Comparisons on Decoding Performances
Pro- Full Beam Widths

posed Search 500 300 200
EER (%) 2.07 2.09 2.18 2.24 2.29
Complexity 0.76 2.74 1.43 1.14 0.92
(MFlops)
Overhead 6.1 8.9 9.8 8.8 8.1
(KFlops)

listed in Tab.1. A summary on the comparison of the system
accuracy and decoding speed is shown in Fig. 4. The results
showed that the accuracy, in term of equal-error rates, of
the proposed algorithm is almost the same as the full search
algorithm and much better than the beam search algorithms
on different beam widths of 200, 300, and 500, where a typ-
ical beam search algorithm was applied. If "j>G
OBG�& # is the grid
point with the best path at time > , and the log likelihood score
is �l"d>G
�B��& # , the path to any "d>G
�B & # will be a candidate for ex-
tension at frame >,C 1 only if �l"d>G
�B & # H �l"d>G
�B��& # <a�

, where�
is called beam width and usually taken to be a constant.

The decoding complexity of the algorithms is compared in
million floating point operations (MFlops) and in terms of
speedup which is defined as the ratio of MFlops between the
full search and other algorithms. The proposed algorithm is
about 4 times faster than the full search algorithm. Com-
pared to the beam-search algorithms, the proposed one is
either much faster when the accuracy is approximately the
same or more accurate when the decoding speed is approxi-
mately the same. Decoding overhead was also evaluated in
Flops. The proposed algorithm uses less Flops than other
algorithms.

The slightly better accuracy compared to the full search
is due to the search space reduction. As shown in Table 2,
the average target scores of true speakers are almost the same
while the average imposter scoreof the proposed algorithm is
reduced due to the mismatch between model and utterances.

5. CONCLUSIONS

In this paper, we first introduced the algorithm on sequen-
tial HMM state change-point detection, then proposed an
algorithm on search space reduction. In the algorithm, the
detected state change points are used to form the boundaries
of a search space. When two boundaries are detected from
a forward and backward scheme, a subspace is determined,

Table 2: Comparisons on Average Target Scores
Algorithms Full Search Proposed
Speakers True Impostor True Impostor
Scores 12.12 0.92 12.10 0.83
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Figure 4: (a) Comparison on system equal-error rates (EER);
(b) Comparison to the Viterbi algorithm on speedups.

and a search algorithm can then be applied to find the optimal
path. Compared to the beam search algorithm, the proposed
one is capable of determining a subspace without any beam
width which is difficult to decide beforehand. The experi-
ment in a speaker verification task showed that the proposed
algorithm can provide much better accuracy than the beam
search algorithm at a similar decoding speed. Compared to
a full search algorithm, the proposed one is about 4 times
faster with almost the same accuracy.
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