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ABSTRACT

Fast and accurate endpoint detection of spoken utterance in
noise environment is important to robust speech and speaker
recognition. The detection algorithm can affect system per-
formance, including accuracy and speed, significantly. In
this paper, we propose a fast algorithm to locate endpoints
by combining the information from matched filter responses
and statistical measures of the spectral energy. Experiments
showed that the algorithm can locate endpoints accurately
even for the utterances containing voice phrases surrounded
by heavy breath, clicks, dial tone, or other noise. The algo-
rithm has been tested in a database for speaker verification
and has been found to perform well in a real language-
independent voice controller with embedded speaker verifi-
cation capability.

1. INTRODUCTION

Speech processing is based on the premise that the signal in
an utterance consists of speech, silence or other background
noise. The detection of the presence of speech from the
various types of non-speech events and background noise is
called endpoint problem or speech detection. Fast, accurate
endpoint detection is important for two reasons. First, the
accuracy of speech or speaker recognition depends on the
accuracy of endpoint detection. For example, cepstral mean
subtraction (CMS), as a popular algorithm for robust speaker
and speech recognition, needs accurate endpoints, therefore,
the mean of voice data can be computed precisely. Second,
the computation of speech recognition can be significantly
reduced if endpoints can be accurately located such that the
non-speech signal can be removed before speech modeling
and decoding. As pointed out in previous studies (e.g. [1]),
endpoint detection is a difficult problem. The non-speech
events and background noise complicate the endpoint detec-
tion problem considerably. For example, the beginning or
end of speech is often obscured by speaker generated arti-
facts such as clicks, pops, heavy breathing, or dial tone sig-

nal. Similar types of artifacts and background noise are also
introduced by long-distance telephone transmission system.

In this paper, we intend to apply the theory developed for
edge detection to the endpoint problem. The filter outputs
and statistical information from the spectral energy are then
combined to locate accurate endpoints. A fast, robust, and
language-independent speaker verification system is then
proposed based on the proposed endpoint algorithm.

2. ENDPOINT DETECTION ALGORITHM

We consider that one utterance may have several voice seg-
ments. Each of the segments is determined by a pair of
endpoints, called beginning and ending points. When we
plot the cepstral energy of an utterance, the edges corre-
sponding to the beginning and ending points are named as
beginning and ending edges, respectively. We will first in-
troduce the matched filters for edge detection, then a simple
statistical model for spectral energy following by the pro-
posed algorithm with several examples.

2.1. Optimal Filter for Edge Detection

The foundation of the theory of optimal edge detector was
first set by Canny [2] for image processing. Canny’s opti-
mal step edge detector was developed based on three criteria:
good signal to noise ratio, good locality, and maximum sup-
pression of false responses. Petrou and Kittler then extended
Canny’s work to ramp edge detection [3]. Since the edges
in spectral energy are closer to the ramp edge than the ideal
step edge, we applied Petrou and Kittler’s filter to endpoint
detection.

Assume that the beginning edge in log spectral energy
is a ramp edge that can be modeled by the function�������
	�� 1 
���������� 2 for ��� 0������� 2 for ��� 0

� 1 �
where � is some positive constant. Also, we assume that the
edges are emersed with white Gaussian noise. Following
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Figure 1: The function of the matched filter for beginning
edge detection, plotted as ��� � 
 ��� , with  	 7 and � 	 1.

Canny’s criteria, Petrou and Kittler proposed a 1-D convo-
lution filter for ramp edge detection [3]. The function of the
filter within the range 
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where + and )54 are filter parameters. The entire function
of the filter for beginning edge detection is��� �6���
	87 
 # � 
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where 
! �?�@�  . Given the profile of beginning
edge, we choose � 	 1 and  	 7. Other filter pa-
rameters provided in [3] are +A	 0 B 41, and ) 1 BCBCB ) 6

	7 1 B 583 3 1 B 468 3 
 0 B 078 3 
 0 B 036 3 
 0 B 872 3 
 0 B 56 = . In order
to show that the function is consistent to the beginning edge,
we plot it as � � � 
 ��� in Fig. 1. On the other hand, the filter
for ending point detection is defined as ��D �����E	 
F� � �6��� to
ensure positive responses at edge locations. Since the last
ending edge in an utterance is usually wider than others, we
have  	 35, � 	 0 B 2 and +G	 0 B 082. Other parameters
are the same as above.

2.2. Spectral Energy Model

We assume the distribution of cepstral energy in an utter-
ance to be approximately represented by a Gaussian mixture
model with two mixtures representing voice and background
energy level respectively,HI�����J	K��L

1
��� ; M 1 3>N 1

�I.O� 1 
 �P�QL 2
��� ; M 2 3>N 2

� 3 � 4 �
where L 4 is a normal distribution, M 4 and NR4 are the mean and
stand deviation respectively, and � is a weighting parameter.
The means for voice and background are MIS 	 max 7 M 1 3 M 2

=
and MIT 	 min 7 M 1 3 M 2

= with the corresponding standard de-
viations, N S and N T . The thresholds for voice and back-
ground are U S 	 M S 
 N S and U T 	 M T . N T , respectively.
When the value of cepstral energy is above U S , we consider it
as voice. When the value of cepstral energy is below U T , we
consider it as background noise. To obtain fast and explicit
parameter estimation, we applied a moment algorithm in-
stead of the popular EM algorithm. Detail of the estimation
algorithm can be found in [4].

2.3. Proposed Algorithm

We use the example in Fig. 2 to present the concept of the
proposed algorithm. The utterance, “Call office”, is first
converted to log spectral energy, V �6��� . The energy level
is normalized to have the largest value be zero. We first
estimate MIS , U&S , U&T , and MIT . The results are shown in
Fig. 2 as the horizontal dashed lines from top to bottom
respectively. Then, we compute the convolution, W � �6���!	� �
X V �6��� , for beginning point detection. The filter outputW � is shown in Fig. 3 as a solid line. Each peak in the
output can be a candidate of the beginning edge of a voice
segment. After comparing the values of the peaks with a pre-
determined threshold, the two largest peaks were determined
as the locations of the centers of beginning edges. From the
first beginning point, we search for the location where the
energy level is lower than U T as the corresponding ending
point. For this example, we got two pairs of endpoints
corresponding to two voice segments, as shown in Fig. 2,
from line E to F and from line G to H, respectively. As we
can see from Fig. 2, the last segment in between line G
and H including the heavy breath. The energy signal in that
segment is then fed into the ending-edge filter, � D . The filter
output is shown in Fig. 3 as the dashed line. The ending
point for the last segment is located by shifting the frame
index of the largest peak to the right for about a half of the
size of the ending edge filter. The final voice segments are
from line E to line F and from line G to line I, respectively,
as shown in Fig. 4.

We now summarize the proposed algorithm for endpoint
detection as follows.

1. Compute log energy of the given utterance, V �6��� , and
normalize it to have the highest value be 0. We assume
that the speech is surrounded by silence and various
kinds of noise.

2. Remove dial tone signal from V �6��� . The dial tone
can be detected at V �����ZY 
 1 B 5, �K	\[ BCB]B 9 , when9 
 [@Y 8. These two parameters are determined
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Figure 2: Normalized log energy of “Call office" with heavy
breath in the end.



0 50 100 150 200 250 300
−12

−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 3: The outputs of the beginning-edge filter (solid
line) and ending-edge filter (dashed line).
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Figure 4: The last ending point was adjusted from Line H
to I by applying the ending-edge filter.

based on the minimal length and minimal energy level
of dial tones.

3. Estimate M S , M T , N S , and N T from V ����� using the
moment algorithm [4], then determine two thresh-
olds U S 	 M S 
 N S and U T 	 M T . N T for voice
and background energy, respectively. Voice energy
should be above the value of threshold U&S and si-
lence/background noise energy should be lower thanU&T .

4. If there is no silence frames in the beginning of V �6��� ,
add  frames of silence with the value of M T , where 	 7 for the beginning edge. Compute the convolu-
tion W^� �6���
	 ��� X V �6��� , where ��� is the matched filter
for beginning edge detection. Search for the locations
of all peaks _ �6`a� , from the filter output. However, not
all the peaks are associated with beginning points. A
peak associated with a beginning point should have the
following properties: W^b � _ �6`a�c�F	 0, W^bdb � _ �6`R�e�gf 0,
and W � _ �6`a�c�5Y 0 B 2 max 7 W � = . The actual beginning
point is h �6i��j	 _ ��ik� 
 2 3 iA	 1 3 BCBCB 3>l , wherel is the total number of beginning edges in the utter-
ance. The shift is due to the offset between the center
of the beginning edge and the actual beginning point.

5. From the first beginning point h �6ik� 3 im	 1, search
for corresponding ending point n �6i�� , which should

satisfy the following conditions: (1) V � n ��ik�c�K�U&T and V � n ��ik�
. 1 �gf U&T ; (2) n �6i�� 
�h ��ik�o� 6;
(3) 60% frames of V ����� , h ��ik�p�:�q� n �6ik� , should
have the values above U&S ; and (4) n �6ik�rf h ��i�. 1 � .
Here, (2) and (3) is to ensure that the segmentation is
voice but a click or breath noise. The parameters are
independent to utterance contents. This gives totallyl pairs of endpoints and l voice segments. The
segment that can not meet the above conditions is not
considered as a voice segment.

6. Search for the last ending point. Compute the re-
sponse of the ending-edge filter in the last segment,W^D �6���s	 ��D X V �6��� , h � l �(�m�:� n � l � . Search
for the last peak of W^D at �t	vu , and W^D �2uF�:�
0 B 6 max 7 W^D �6���>= . Then, shift the peak point located
in the center of ending edge to the last ending point.
The offset should be about the half of the filter size.
We choose16 frames. Then, n � l �w	\u". 16, ifV D �2uG. 16 �:� U&T , otherwise, n � l �x	zy whereV �Qy{�p� U&T and V �|y}. 1 �~f U&T .

3. SPEAKER VERIFICATION APPLICATIONS

To evaluate the effectiveness, we first compared the end-
points detected by the proposed algorithm with the endpoints
detected by HMM approach, using manually detected end-
point as references. The experiments, on a database with
100 speakers and 4741 utterances, showed that the proposed
approach has the similar accuracy as the HMM approach on
locating endpoints while the proposed one is much faster.

Then, we apply the proposed algorithm to develop fast,
robust, and language-independent speaker verification sys-
tems. The system front-end is shown in Fig. 5 [5]. After
LPC cepstral extraction, the proposed algorithm is applied
to detect endpoints on cepstral energy, then silence, breath,
dial tone, and other non-speech signals are removed from
the feature set. Given the original feature observation of � ,
after silence removal, the feature set becomes � which is a
subset of � , i.e., O �:� . CMS is then performed on � .

The speaker verification performance was evaluated on
a database consisting of 38 speakers, 18 male and 20 female
[6] for speaker verification. The common pass-phrase for
all speakers is “Call Janice at her office phone.” Each true
speaker is tested with the same pass-phrase from all impos-
tors. The feature vector is composed of 12 cepstrum and 12
delta cepstrum coefficients. The cepstrum is derived from a
10th order LPC analysis over a 30 ms window. The feature
vectors are updated at 10 ms intervals.

In a training session, 5 utterances collected from an en-
rollment phone call are used to train a left-to-right HMM,
called target model, �a� . Due to the limitation on the model
size, the number of states is estimated based on 10 frames
per sate. There are 4 Gaussian components associated with
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Figure 5: The front-end processor

each state. Also, due to unreliable variance estimates from
limited amount of training data, a global variance estimate
is used as a common variance to all Gaussian components
[7].

The evaluation was separated into two groups, male and
female, and speakers were tested within the same gender.
For each male speaker, ten utterances from the true speaker
collected from 5 different sessions and 17 � 5 	 85 utter-
ances from impostors were used for testing. For each female
speaker, there are 10 utterances from the true speaker while
the number of impostors’ utterances are 19 � 5 	 95.

In a language-independent configuration, after CMS, the
feature observation O is decoded by the target model to get
a likelihood score� � � ; �R� �~	 1� log � � ��� �a� � 3 � 5 �
where

�
is the total number of feature vectors, � � ��� � �

is the accumulative likelihood score computed by forced
decoding. The decision on acceptance or rejection is made
by comparing the score with a pre-determined threshold
value.

When an application needs a higher level of security,
in addition to the target model, a background model with
likelihood ratio test can be applied to speaker verification
[8, 7]. Since lexicon is needed for accurate HMM decoding,
the configuration is language dependent.

The evaluation results are shown in Table 1. The accu-
racy is in the same level as the speaker verification system
[7] where HMMs were applied for endpoint detection. The
system performance can be further improved if model adap-
tation is allowed.

Table 1: Speaker Verification Performance on Average
Individual Equal-Error Rates

System Language- Language-
Configurations Independent Dependent

(w/o BK models) (with BK models)
18 Males 3.6% 2.0%
20 Females 4.4% 3.5%
Average 4.0% 2.8%

4. CONCLUSIONS

We have proposed a fast, efficient algorithm for locating
the endpoints of an utterance with variety of noise, such
as heavy breath, dial tone, clicks, etc. The detection de-
cision is based on matched filter responses and statistical
measures of spectral energy. The experiments showed that
proposed algorithm provided the similar verification accu-
racy as the systems using HMM for endpoint detection,
while the proposed algorithm is much faster and can support
language-independent applications. The algorithm has been
applied to develop a real system for language-independent
voice control with embedded speaker verification [5]. The
proposed algorithm can be applied to provide accurate end-
points for CMS in speech recognition and for other appli-
cations. Also, the proposed algorithm can be extended to
real-time endpoint detection.
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