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ABSTRACT

Fast and accurate endpoint detection of spoken utterance in
noise environment isimportant to robust speech and speaker
recognition. The detection algorithm can affect system per-
formance, including accuracy and speed, significantly. In
this paper, we propose a fast algorithm to locate endpoints
by combining the information from matched filter responses
and statistical measures of the spectral energy. Experiments
showed that the algorithm can locate endpoints accurately
even for the utterances containing voice phrases surrounded
by heavy breath, clicks, dial tone, or other noise. The algo-
rithm has been tested in a database for speaker verification
and has been found to perform well in a rea language-
independent voice controller with embedded speaker verifi-
cation capability.

1. INTRODUCTION

Speech processing is based on the premise that the signal in
an utterance consists of speech, silence or other background
noise. The detection of the presence of speech from the
various types of non-speech events and background noiseis
called endpoint problem or speech detection. Fast, accurate
endpoint detection is important for two reasons. First, the
accuracy of speech or speaker recognition depends on the
accuracy of endpoint detection. For example, cepstral mean
subtraction (CMS), asapopular algorithmfor robust speaker
and speech recognition, needs accurate endpoints, therefore,
the mean of voice data can be computed precisely. Second,
the computation of speech recognition can be significantly
reduced if endpoints can be accurately located such that the
non-speech signal can be removed before speech modeling
and decoding. As pointed out in previous studies (e.g. [1]),
endpoint detection is a difficult problem. The non-speech
events and background noise complicate the endpoint detec-
tion problem considerably. For example, the beginning or
end of speech is often obscured by speaker generated arti-
facts such as clicks, pops, heavy breathing, or dial tone sig-

nal. Similar types of artifactsand background noise are also
introduced by long-distance tel ephone transmission system.
Inthis paper, weintend to apply thetheory devel oped for
edge detection to the endpoint problem. The filter outputs
and statistical information from the spectral energy are then
combined to locate accurate endpoints. A fast, robust, and
language-independent speaker verification system is then
proposed based on the proposed endpoint algorithm.

2. ENDPOINT DETECTION ALGORITHM

We consider that one utterance may have several voice seg-
ments. Each of the segments is determined by a pair of
endpoints, called beginning and ending points. When we
plot the cepstral energy of an utterance, the edges corre-
sponding to the beginning and ending points are named as
beginning and ending edges, respectively. We will first in-
troduce the matched filters for edge detection, then asimple
statistical model for spectral energy following by the pro-
posed algorithm with several examples.

2.1. Optimal Filter for Edge Detection

The foundation of the theory of optimal edge detector was
first set by Canny [2] for image processing. Canny’s opti-
mal step edge detector was devel oped based onthreecriteria:
good signal to noiseratio, good locality, and maximum sup-
pression of falseresponses. Petrou and Kittler then extended
Canny’s work to ramp edge detection [3]. Since the edges
in spectral energy are closer to the ramp edge than the ideal
step edge, we applied Petrou and Kittler’ sfilter to endpoint
detection.

Assume that the beginning edge in log spectra energy
isaramp edge that can be modeled by the function

[ 1—e7/2 forz>0
w={ 1y PRy W

where s is some positive constant. Also, we assume that the
edges are emersed with white Gaussian noise. Following
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Figure 1: The function of the matched filter for beginning
edge detection, plotted as hy (—z), with 1V = 7and s = 1.

Canny’s criteria, Petrou and Kittler proposed a 1-D convo-
[ution filter for ramp edge detection [3]. The function of the
filter withintherange — W < 2 < Ois

f(z) = e [Kisin(Az) + Ko cos(Ax)]
+ 747 [Kasin(Az) + Kqco8(Az)]
+ K5+ Kee*®, 2

where A and K; are filter parameters. The entire function
of the filter for beginning edge detection is

hp(z) ={-f(-W <i<0), f(-1<i<-W)}, (3

where -1/ < z < W. Given the profile of beginning
edge, we choose s = 1 and W = 7. Other filter pa-
rameters provided in [3] are A = 0.41, and K1...Kg =
{1.583,1.468, —0.078, —0.036, —0.872, —0.56}. In order
to show that the function is consistent to the beginning edge,
weplotit as hy(—z) in Fig. 1. On the other hand, the filter
for ending point detection is defined as h.(z) = —hy(z) to
ensure positive responses at edge locations. Since the last
ending edge in an utteranceis usually wider than others, we
have W = 35, s = 0.2and A = 0.082. Other parameters
are the same as above.

2.2. Spectral Energy Model

We assume the distribution of cepstral energy in an utter-
anceto be approximately represented by a Gaussian mixture
model with two mixturesrepresenting voice and background
energy level respectively,

p(z) = eNi(z; pa, 01) + (L= )Na(z; p2, 02), (4)

where V; isanormal distribution, p; and o; arethemean and
stand deviation respectively, and ¢ isaweighting parameter.
The meansfor voice and background are pi,, = max{p1, 2}
and p,, = min{ 1, po} with the corresponding standard de-
viations, ¢, and ¢,,. The thresholds for voice and back-
ground are §, = p, — o, aNd 8, = p, + o, respectively.
When thevalue of cepstral energy isaboved, , weconsider it
asvoice. When the value of cepstral energy isbelow 4,,, we
consider it as background noise. To obtain fast and explicit
parameter estimation, we applied a moment algorithm in-
stead of the popular EM algorithm. Detail of the estimation
algorithm can befound in [4].

2.3. Proposed Algorithm

We use the example in Fig. 2 to present the concept of the
proposed algorithm. The utterance, “Call office’, is first
converted to log spectral energy, g(z). The energy level
is normalized to have the largest value be zero. We first
estimate i, 0, 0,, and p,. The results are shown in
Fig. 2 as the horizontal dashed lines from top to bottom
respectively. Then, we compute the convolution, y(z) =
hy * g(z), for beginning point detection. The filter output
yp is shown in Fig. 3 as a solid line. Each peak in the
output can be a candidate of the beginning edge of a voice
segment. After comparing the valuesof the peakswith apre-
determined threshold, thetwo | argest peakswere determined
asthe locations of the centers of beginning edges. From the
first beginning point, we search for the location where the
energy level islower than 4,, as the corresponding ending
point. For this example, we got two pairs of endpoints
corresponding to two voice segments, as shown in Fig. 2,
from line E to F and from line G to H, respectively. Aswe
can see from Fig. 2, the last segment in between line G
and H including the heavy breath. The energy signal in that
segment is then fed into the ending-edgefilter, h.. Thefilter
output is shown in Fig. 3 as the dashed line. The ending
point for the last segment is located by shifting the frame
index of the largest peak to the right for about a half of the
size of the ending edge filter. The final voice segments are
fromline E to line F and from line G to line |, respectively,
asshownin Fig. 4.

We now summarizethe proposed al gorithm for endpoint
detection as follows.

1. Compute log energy of the given utterance, g(z), and
normalizeit to havethe highest valuebe0. We assume
that the speech is surrounded by silence and various
kinds of noise.

2. Remove dia tone signal from g(z). The dia tone
can be detected at g(z) > —1.5, x = n...i, when
i —n > 8. These two parameters are determined

Figure2: Normalizedlog energy of “ Call office" with heavy
breath in the end.
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Figure 3: The outputs of the beginning-edge filter (solid
line) and ending-edge filter (dashed line).
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Figure 4: The last ending point was adjusted from Line H
to | by applying the ending-edgefilter.

based on the minimal length and minimal energy level
of dial tones.

3. Estimate iy, fin, 0y, and o, from g(z) using the
moment algorithm [4], then determine two thresh-
ods 8, = p, — o, and 6, = p, + o, for voice
and background energy, respectively. Voice energy
should be above the value of threshold ¢, and si-
lence/background noise energy should be lower than
0.

4. If thereis no silence framesin the beginning of g(z),
add W frames of silence with the value of p,,, where
W = 7 for thebeginning edge. Computethe convolu-
tion y;(z) = hp * g(x), where h; isthe matched filter
for beginning edge detection. Search for thelocations
of all peaks R(k), from thefilter output. However, not
all the peaks are associated with beginning points. A
peak associated with abeginning point should havethe
following properties: y'(R(k)) = 0, y"(R(k)) < O,
and y(R(k)) > 0.2max{ys}. The actual beginning
point is B(m) = R(m) — 2, m = 1,..., M, where
M isthetotal number of beginning edgesin the utter-
ance. The shift isdue to the offset between the center
of the beginning edge and the actua beginning point.

5. From thefirst beginning point B(m), m = 1, search
for corresponding ending point Z(m), which should

satisfy the following conditions: (1) g(F(m)) >
Opand g(E(m) + 1) < 0,; (2) E(m) — B(m) > 6;
(3) 60% frames of g(z), B(m) < x < E(m), should
havethevaluesaboved, ; and (4) F(m) < B(m+1).
Here, (2) and (3) isto ensure that the segmentation is
voice but a click or breath noise. The parameters are
independent to utterance contents. This gives totally
M pairs of endpoints and M voice segments. The
segment that can not meet the above conditionsis not
considered as a voice segment.

6. Search for the last ending point. Compute the re-
sponse of the ending-edge filter in the last segment,
Ye(z) = he x g(z), B(M) < 2z < E(M). Search
for the last peak of y. a =z = T, and y.(T) >
0.6max{y.(z)}. Then, shift the peak point located
in the center of ending edge to the last ending point.
The offset should be about the half of the filter size.
We choosel6 frames. Then, E(M) = T + 16, if
g.(T + 16) > 0,, otherwise, E(M) = ¢ where
g(0) > 0, andg(¢ + 1) < 0,.

3. SPEAKER VERIFICATION APPLICATIONS

To evaluate the effectiveness, we first compared the end-
points detected by the proposed al gorithm with the endpoints
detected by HMM approach, using manually detected end-
point as references. The experiments, on a database with
100 speakersand 4741 utterances, showed that the proposed
approach has the similar accuracy asthe HMM approach on
locating endpoints while the proposed oneis much faster.

Then, we apply the proposed algorithm to develop fast,
robust, and language-independent speaker verification sys-
tems. The system front-end is shown in Fig. 5 [5]. After
LPC cepstral extraction, the proposed algorithm is applied
to detect endpoints on cepstral energy, then silence, breath,
dia tone, and other non-speech signals are removed from
the feature set. Given the original feature observation of O,
after silence removal, the feature set becomes O whichisa
subset of O, i.e.,, O C O@. CMSisthen performed on O.

The speaker verification performance was evaluated on
adatabase consisting of 38 speakers, 18 maleand 20 female
[6] for speaker verification. The common pass-phrase for
all speakersis“Call Janice at her office phone” Each true
speaker is tested with the same pass-phrase from all impos-
tors. The feature vector is composed of 12 cepstrum and 12
delta cepstrum coefficients. The cepstrum is derived from a
10th order LPC analysis over a 30 ms window. The feature
vectors are updated at 10 msintervals.

In atraining session, 5 utterances collected from an en-
rollment phone call are used to train a left-to-right HMM,
called target model, A;. Due to the limitation on the model
size, the number of states is estimated based on 10 frames
per sate. There are 4 Gaussian components associated with
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Figure5: The front-end processor

each state. Also, due to unreliable variance estimates from
limited amount of training data, a global variance estimate
is used as a common variance to all Gaussian components
[7].

The evaluation was separated into two groups, male and
female, and speakers were tested within the same gender.
For each male speaker, ten utterances from the true speaker
collected from 5 different sessionsand 17 x 5 = 85 utter-
ancesfrom impostorswere used for testing. For eachfemale
speaker, there are 10 utterances from the true speaker while
the number of impostors’ utterancesare 19 x 5 = 95.

In alanguage-independent configuration, after CM S, the
feature observation O is decoded by the target model to get
alikelihood score

L(O; \) = %IogP(OMt), (5)

where N is the total number of feature vectors, P(O|A)
is the accumulative likelihood score computed by forced
decoding. The decision on acceptance or rejection is made
by comparing the score with a pre-determined threshold
value.

When an application needs a higher level of security,
in addition to the target model, a background model with
likelihood ratio test can be applied to speaker verification
[8,7]. Sincelexiconis needed for accurate HMM decoding,
the configuration is language dependent.

The evaluation results are shown in Table 1. The accu-
racy isin the same level as the speaker verification system
[7] where HMMs were applied for endpoint detection. The
system performance can be further improved if model adap-
tation is allowed.

Table 1: Speaker Verification Performance on Average
Individual Equal-Error Rates

System Language- Language-

Configurations Independent Dependent
(w/o BK models) | (with BK models)

18 Males 3.6% 2.0%

20 Females 4.4% 3.5%

Average 4.0% 2.8%

4. CONCLUSIONS

We have proposed a fast, efficient algorithm for locating
the endpoints of an utterance with variety of noise, such
as heavy breath, dia tone, clicks, etc. The detection de-
cision is based on matched filter responses and statistical
measures of spectral energy. The experiments showed that
proposed algorithm provided the similar verification accu-
racy as the systems using HMM for endpoint detection,
whilethe proposed al gorithm is much faster and can support
language-independent applications. The algorithm has been
applied to develop areal system for language-independent
voice control with embedded speaker verification [5]. The
proposed algorithm can be applied to provide accurate end-
points for CMS in speech recognition and for other appli-
cations. Also, the proposed algorithm can be extended to
real-time endpoint detection.
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