Fast Training Algorithms for Large Data Sets with Application

to Classification of Multispectral Images

Qi Li, Donald W. Tufts, Roland J. Duhaime*, and Peter V. August*

Dept. of Electrical Engineering

*Dept. of Natural Resources Science

University of Rhode Island
Kingston, RI, 02881

Abstract

Two methods of classification and related fast train-
ing algorithms are compared with each other and with
backpropagation in this paper. The first method is the
Discriminant Neural Network (DNN) [1, 2]. One hid-
den node is added at each design stage until the DNN
meets the design requirements. The second method
uses the Radial Basis Function Network (RBF) [3].
We modify the RBF by solving a succession of binary
classification problems in order to provide fast train-
ing. These two classification methods are applied to
automatically classify 14 categories of land cover using
multispectral aerial images. We find that the training
times for the DNN and the modified RBF (MRBF)
are much less than the training times for backpropa-
gation or RBF. The performances of DNN (72%) and
MRBF (60%) are better than obtained by linear dis-
criminant analysis (LDA) (55%) [4]. The resulting
structure and computations are simpler for the DNN
than for the other methods.

1 Introduction

For real world applications of classification and pat-
tern recognition, such as remote sensor images, radar,
sonar and speech data, the data sets are often very
large. Even through multilayer perceptron (MLP)
neural networks with backpropagation algorithms can
be applied to these problems, it is well known that the
training phase normally takes a tremendous amount of
time. To overcome the problem, two neural network
architectures and associated training algorithms are
proposed here.

The first one, called the Discriminant Neural Net-
work (DNN) is motivated by optimal multivariate
Gaussian classification. When two training data popu-

lations C; and Cy are described as multivariate Gaus-
sian distributions with sample mean vectors and co-
variance matrices p1, 1 and po, Yo respectively, the
optimal classification rule to minimize the expected
cost of misclassification is given by [5]:

1

Crs =X (Bt =3, x o (B — s 3y)x > 6,
. 1)

Cy: —§Xt(2f1 -)x + (kT - pb 2 hx < 6.
(2)

where x is an observed data vector or feature vec-
tor and 6 is a threshold determined by the cost ratio,
the prior probability ratio, and the determinants of
the covariance matrices. When the covariance matri-
ces are the same, the first quadratic term is zero, and
the above classifier computes Fisher’s linear discrimi-
nant. When the second term can be ignored, the above
formulas only have the first quadratic term. These
two properties helped us to define two kinds of hidden
nodes in DNN training, a Fisher’s node and a princi-
pal component node. The latter is an approximation
to the quadratic term.

The second one, modified from the Radial Basis
Function Network (RBF) [3], is also motivated by
minimization of the Probability of Misclassification of
Gaussian Populations [5]. The rule is to allocate a
vector x to class k if the quadratic score

di(x) = largest of d;(x), da(X), ..., dp(x). (3)
where d; is quadratic discrimination score for the ith
class,

1 1 _
di(x) = —§ln |Ei|_§(x_ﬂi)t2i Y(x—pi)+Inp;, (4)

where X; and p; are as defined above, and the p; is
the prior probability for class 4.

2 Fast Training and Design of the Dis-
criminant Neural Network

In [1, 2], Li and Tufts presented the DNN and the
associated fast training algorithm.

As shown in Figure 1, the DNN has two layers, one
hidden layer and one output layer. The hidden layer
consists of hidden nodes. Each hidden node forms one
or several parallel hyperplanes to partition the input
pattern space into regions. Each region is represented
by a binary word which is the output of the hidden
node. The output nodes in the output layer are logic
functions of the binary outputs of the hidden nodes.

DNN output

Binary word of
hidden nodes

Figure 1: A recommended implementation for a
Discriminant Neural Network (DNN).

The output of one of the biased hardlimiters of one
hidden node in response to a given data vector x is

y = f(x'w), (5)

in which x*w is the inner product of the input vector x
and weight vector w. The biased hardlimiter function,
f(), is specified by the formula,

t _ 1, XtW > 0,
row) ={ g K2 ©

in which 6 is a threshold value which can also be con-
sidered as a bias for the argument of the nonlinearity.
Several hardlimiters are allowed for any one of the
hidden nodes.

The design algorithm [1, 2] to train the input layer
is to choose the weight vector w for each hidden node
by applying Fisher’s linear discriminant analysis or
principal component discriminant analysis recursively.
Depending on the residual data distribution at each
training stage, one of the analysis methods will be se-
lected to determine a weight vector w for the new node

and to prune the already classified training vectors
from the training set. That is, the training data vec-
tors in the subsets which already satisfy a prescribed
misclassification rate are deleted from the training
data set. The remaining training data vectors are car-
ried over to the training of the next hidden node. We
sequentially add and train new, needed hidden nodes
one by one pruning training data vectors at each steps
until the network performance meets the design spec-
ification.

If we only use the concept of Fisher’s linear discrim-
inant analysis, then the corresponding weight vector
provides little classification ability when the mean vec-
tors of the training classes are too close. To avoid
this problem, we use a Principal Component Discrim-
inant to design one or more weight vectors w of prin-
cipal component nodes. The output values of a prin-
cipal component node provides an approximation to
the quadratic term in the Gaussian classifier.

(BT = B h)x & A (xPer)?, (7)

where A; and e; are the largest eigenvalue and the cor-
responding principal eigenvector of (X7 o b). Be-
cause the squared quantity on the right will be thresh-
olded, the square does not need to be computed. We
simply use two hardlimited values of x'e;, one with
positive bias and one with negative bias. For the case
of multiple classes, 31 is the covariance matrix of one
class and X, is the covariance matrix of the combined
other classes.

2.1 A Design Example

We use an example in Figure 2 to illustrate the
above training methods. The design starts from
the training of the first hidden node and the associ-
ated two hyperplanes with all the training data using
Fisher’s method. Then, the classified data is pruned
off and only the unclassified data in between of the
two hyperplanes are used to train the second hidden
node. The residual data set from Figure 2 is shown in
Figure 3. Since the mean vectors of the two classes are
close, Fisher’s method does not give the best classifica-
tion result. We find this out by designing a alternate
second hidden node and determining its two associ-
ated hyperplanes. The residual data set was totally
separated by the second node. The classification im-
provement showed that the principal component node
is a better choice then the linear discriminant node for
the second hidden node. The design procedure was
then stopped. The partitioned input space is shown
in Figure 4.

Figure 2: The original data and the hyperplanes
of the first hidden node (Fisher’s node).

3

3f

25F T~

Figure 3: The residual data set and the hyper-
planes of the second hidden node (Principal
Component Discriminant node).

If we used Fisher’s method to design the second
node, the residual data set would not be totally par-
titioned by the second Fisher’s node, and one more
node would be needed to totally partition the input
space. Even though that inefficient extra node can be
pruned by Boolean minization [1, 2] at the end of the
design, it will slow down the training procudere.

For the above classification problem, the Backprop-
agation (BP) training method takes hundreds of sec-
onds to hours, and one still does not get satisfactory
classification. The Radial Basis Network (RBF) can
converge to an acceptable performance in 35 seconds,
but it needs 56 nodes. On the same problem, DNN
design only takes 0.2 seconds and needs only two hid-
den nodes with a better performance than both BP
and RBF.

3 Modified Radial Basis Function Net-
work

The training of RBF networks is faster than mul-
tilayer perceptron networks which are trained using
backpropagation training algorithm. However, when

oo o

Figure 4: The partitioned input space, two hid-
den nodes and four thresholds.

training data sets are large and with multiple classi-
fication categories, it still needs a long training time.
To speed up the training process for a large data set
with multiple outputs, we break down the training
problem into the training of each member of a group
of RBF modules, called a Modified Radial Basis Func-
tion Network (MRBF). A MRBF network consists of
a group of single-output RBF modules. The number
of modules is equal to the number of classification cat-
egories. Thus each single-output RBF module is only
responsible for one classification category.

The structure of the MRBF network is shown in
Figure 5. It has a group of RBF modules running
in parallel and a Winner-Take-All (WTA) unit at the
output layer. Since each of the RBF modules is trained
for one specified category, when a pattern is applied to
the MRBF, the RBF module trained for that category
will have the largest response among all RBF module
outputs. Then that RBF output is the winner and
the category represented by that RBF module is the
classified category.

Categoryl Category14

RARRRRARRANAI

[wen |

Figure 5: The structure of a Modified Radial
Basis Function Network (MRBF).

The training procedure is a succession of solutions
of binary classification problems. When training one
of the RBF modules, the data in the category which
corresponds to that RBF module is in one class and

the data in all other categories are grouped into an-
other class. As drawn in the broken-line boxes in Fig-
ure 5, a RBF network (a module in a MRBF) is a
two-layer network. The output node in each RBF net-
work forms a linear combination of the outputs of the
hidden nodes. Each hidden node has a basis function.
The most common basis function is a Gaussian kernel
function. The basis functions produce a localized re-
sponse to an input stimulus, i.e. they output a signifi-
cant nonzero response only when the input vector falls
within a small localized region of the input space. The
details of the RBF training algorithms can be found
in [3] and [6].

4 Land Cover Recognition from Mul-
tispectral Images

We applied the DNN and MRBF networks to rec-
ognize categories of land cover from three images of
Block Island, Rhode Island using three spectral bands
- two visible and one infrared. Each complete image
has 4591 x 7754 pixels. Each pixel has a resolution
of 1.27 m and belongs to one of 14 categories of land
cover.

The training data set is a matrix which is formed
from a subset of pixels which have been classified and
labeled. Each row is one training vector which has
9 feature elements associated with one pixel. In [4],
each of these vectors was labeled with one of the 14
land cover categories. The nine feature components of
each row vector consist of pixel intensity in the three
color bands, three local standard deviations of inten-
sity, one for each color, and three features from the
side information of a soil database. The definitions of
the features in the entries of the data matrix are listed
as follows [4].

Column 1 The number of the category to which the
pixel belongs (1-14).

Column 2 Band 1 represents the intensity of the in-
frared portion of the reflected light received by
camera in a pixel designated by the row index(0-
255).

Column 3 Band 2 represents the intensity of the vis-
ible red portion of the reflected light in a row-
designated pixel (0-255).

Column 4 Band 3 represents the intensity of the vis-
ible blue portion of the reflected light in a row-
designated pixel (0-255).

Column 5 The standard deviation of Band 1 re-
flectance in a diameter of 10m floating window
around the row-designated pixel.

Column 6 The standard deviation of Band 2 re-
flectance in a diameter of 10m floating window
around the row-designated pixel.

Column 7 The standard deviation of Band 3 re-
flectance in a diameter of 10m floating window
around the row-designated pixel.

Column 8 Degree of local slope at the designated
pixel.

Column 9 Aspect of the slope at the designated
pixel. A south facing aspect is a 0 and north
facing or no aspect is 1.

Column 10 Drainage class of soil. Range is from 0
to 5 with the meanings of 0 = variable, 1 = well
drained and somewhat excessively drained, 2 =
moderately well drained, 3 = poorly drained, 4 =
very poorly drained, and 5 = open water.

In [4], Duhaime identified 14 categories of land cov-
ers for supervised training. These categories are as
follows:

Category 1 Freshwater shrub wetlands are com-
prised of arrowwood and rosaceous shrubs in very
poorly drained soils.

Category 2 Morainal grasslands consists of herba-
ceous fields.

Category 3 Pastures and grass fields.

Category 4 Upland pine shrublands occuring as
small patches of coniferous shrubs.

Category 5 Dunes are hills of wind-down sand.

Category 6 Salt marsh is characterized by perennial,
salt tolerant graminoids, etc.

Category 7 Hayfields consists of areas that are man-
aged for hay.

Category 8 Upland deciduous shrublands consist of
dense stands of shadbush, bayberry, and arrow-
wood.

Category 9 Old fields represent a successional stage
between pastures and shrublands.

Category 10 Sand consists of gravel pits or beaches
with little or no vegetation.

Category 11 Freshwater consists of standing water
with no rooted vegetation.

Category 12 Ocean

Category 13 Freshwater emergent wet-
lands are dominated by hydrophytic perennials,
graminoids, and tussock sedges.

Category 14 Other is a miscellaneous category com-
prised of roads, roofs of buildings, paved areas, or
rocky shores.

5 Experimental Results

The computer experiments on the multispectral im-
age features started by using backpropagation and
RBF algorithms. However, both of them did not
get the needed classification results in a reasonable
amount of times as estimated from their converage
speeds. Then the DNN and the Modified RBF algo-
rithms were applied to solve the problem. The experi-
mental results are listed in Table 1 and compared with
one another.

Table. 1. ComparingThree Training M ethods

warss wrLors| FUTINS No g | ARIEL
DNN 37.64 58 77 72 %
MRBF | 221.93 518 490 60 %
LDA — — — 55 %

The MRBF method used a training data set of 140
sample vectors, 10 from each category, and tested on
a test data set of 700 samples, 50 samples from each
category. It gets an average accuracy of 60% on the
test set for all of the 14 categories defined above. The
training took 518 seconds CPU time on a Sun Sparc
IPX workstation. The DNN is trained by 700 training
samples since the DNN can run much faster than oth-
ers. It took only 58 seconds CPU time and reached an
average performance of 72% on the same test set and
on all 14 categories (the performance is 65% if using
the 140 sample set for training). The performance of
linear discriminant analysis (LDA) was reported in [4].
It is 55% on an average of 11 categories out of the all
14 categories based on different training and test data
sets.

6 Conclusions

Two neural network structures, a discriminant neu-
ral network and a modified radial basis function net-
work, and associated fast design methods were pre-
sented. These two methods are also compared with
three other existing training methods, linear discrimi-
nant analysis, backpropagation, and radial basis based
function, for the design of a classifier for the multi-
spectral images. The computer experiments show that
the performance of the Discriminant Neural Network
is better than other approaches. It takes much less
training time than the others. The performance and
the training time of the modified RBF are acceptable
but it needs more nodes than the DNN.

Acknowledgements

The authors thank Dr. James Kowalski for techni-
cal discussions and for facilitating this project.

References

[1] Q. Li and D.W. Tufts, “Synthesizing neural net-
works by sequential addition of hidden nodes,”
Proc. IEEE International Conference on Neural
Networks, pp. 708-713, Orlando, Florida, June
1994.

[2] Q. Li and D.W. Tufts, “Discriminant networks: a
simple, effective, and rapidly trainable class of neu-
ral networks,” Submitted to the IEEE Trans. on
Neural Networks, February 1994.

[3] S. Chen, C.F.N. Cowan, and P.M. Grant, “Or-
thogonal least squares learning algorithm for radial
basis function networks,” IEEE Trans. on Neural
Networks, vol. 2, No. 2, March 1991.

[4] R.J. Duhaime, “The use of color infrared digital
orthophotography to map vegetation on Block Is-
land, Rhode Island,” M.S. Thesis, Dept. of natural
resources science, University of Rhode Island, May
1994.

[5] R.A. Johnson and D.W. Wichern, “Applied multi-
variate statistical analysis”, pp. 470-530, New Jer-
sey: Prentice Hall, 1988.

[6] H. Demuth and M. Beale, “Neural network toolbox
user’s guide,” The MathWorks Inc., 1994.

